Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of resistive switching in two-dimensional monolayer and multilayer materials

Abstract

The power and energy consumption of resistive switching devices can be lowered by reducing the dimensions of their active layers. Efforts to push this low-energy switching property to its limits have led to the investigation of active regions made with two-dimensional (2D) layered materials. Despite their small dimensions, 2D layered materials exhibit a rich variety of switching mechanisms, each involving different types of atomic structure reconfiguration. In this Review, we highlight and classify the mechanisms of resistive switching in monolayer and bulk 2D layered materials, with a subsequent focus on those occurring in a monolayer and/or localized to point defects in the crystalline sheet. We discuss the complex energetics involved in these fundamentally defect-assisted processes, including the coexistence of multiple mechanisms and the effects of the contacts used. Examining the highly localized ‘atomristor’-type switching, we provide insights into atomic motions and electronic transport across the metal–2D interfaces underlying their operation. Finally, we discuss progress and our perspective on the challenges associated with the development of 2D resistive switching devices. Promising application areas and material systems are identified and suggested for further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operation, structure and mechanisms of 2DLM RS devices.
Fig. 2: Structural transitions leading to RS in hBN and TMDC devices.
Fig. 3: Mechanisms of RS at the electrode–monolayer 2H MoS2 interface.
Fig. 4: Device performance and scaling trends for vertical 2DLM RS device stacks made with mono- or multilayer active areas.

Similar content being viewed by others

References

  1. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018). The authors provide a comprehensive review of RS technology for digital and analogue computing.

    Article  Google Scholar 

  2. Wu, H., Yao, P., Gao, B. & Qian, H. Multiplication on the edge. Nat. Electron. 1, 8–9 (2018).

    Article  Google Scholar 

  3. Kim, D. et al. Emerging memory electronics for non-volatile radio frequency switching technologies. Nat. Rev. Electr. Eng. 1, 10–23 (2024).

    Article  Google Scholar 

  4. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Lanza, M. et al. Recommended methods to study resistive switching devices. Adv. Electron. Mater. 5, 1800143 (2018).

  6. Yang, S. J. et al. Reconfigurable low-voltage hexagonal boron nitride nonvolatile switches for millimeter-wave wireless communications. Nano Lett. 23, 1152–1158 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article  CAS  Google Scholar 

  8. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2017). This paper demonstrates the universality of non-volatile RS in monolayer TMDCs for bi/non-polar switching.

    Article  PubMed  Google Scholar 

  10. Huang, Y. et al. Reliability improvement and effective switching layer model of thin-film MoS2 memristors. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202214250 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Villena, M. A. et al. Variability of metal/h-BN/metal memristors grown via chemical vapor deposition on different materials. Microelectron. Reliab. 102, 113–410 (2019).

    Article  Google Scholar 

  12. Zhao, X. et al. Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. J. Mater. Chem. C 6, 7195–7200 (2018).

    Article  CAS  Google Scholar 

  13. Li, D. et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12, 9240–9252 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Farronato, M. et al. Memtransistor devices based on MoS2 multilayers with volatile switching due to Ag cation migration. Adv. Electron. Mater. 8, 2101161 (2022).

  15. Leong, J. F. et al. N-P reconfigurable dual-mode memtransistors for compact bio-inspired feature extractor with inhibitory-excitatory spiking capability. Adv. Funct. Mater. 33, 2302949 (2023).

  16. Huang, C.-H. et al. Artificial synapse based on a 2D-SnO2 memtransistor with dynamically tunable analog switching for neuromorphic computing. ACS Appl. Mater. Interfaces 13, 52 822–52 832 (2021).

    Article  CAS  Google Scholar 

  17. Ranganathan, K., Fiegenbaum-Raz, M. & Ismach, A. Large-scale and robust multifunctional vertically aligned MoS2 photo-memristors. Adv. Funct. Mater. 30, 2005718 (2020).

  18. Bhattacharjee, S. et al. Insights into multilevel resistive switching in monolayer MoS2. ACS Appl. Mater. Interfaces 12, 6022–6029 (2020). The authors investigated electronic transport characteristics in monolayer MoS2 RS devices with Au contacts, providing evidence for thermally activated RESET processes and multiple distinct conductance states originating from different vacancy defect sites.

    Article  CAS  PubMed  Google Scholar 

  19. Hus, S. M. et al. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 16, 58–62 (2020). One of the smallest small RS regions is reported in this paper: a gold atom substituting into a single vacancy in MoS2.

    Article  PubMed  Google Scholar 

  20. Nikam, R. D., Rajput, K. G. & Hwang, H. Single-atom quantum-point contact switch using atomically thin hexagonal boron nitride. Small 17, e2006760 (2021).

    Article  PubMed  Google Scholar 

  21. Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

  22. Datye, I. M. et al. Localized heating and switching in MoTe2-based resistive memory devices. Nano Lett. 20, 1461–1467 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2018). The authors identified field-induced phase transitions in multilayer MoTe2 for use as phase-change memory.

    Article  PubMed  Google Scholar 

  24. Krishnaprasad, A. et al. MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano 16, 2866–2876 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, Y., Penev, E. S. & Yakobson, B. I. Mechanisms of defect-mediated memristive behavior in MoS2 monolayer. Nano Lett. 24, 13037–13043 (2024).

  26. Li, S. et al. Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing. npj 2D Mater. Appl. 5, 7256 (2021).

    Article  Google Scholar 

  27. Yan, X. et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing. Small 15, e1901423 (2019).

    Article  PubMed  Google Scholar 

  28. Tang, B. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, B. et al. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater. 6, 2000760 (2020).

    Article  CAS  Google Scholar 

  30. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Hou, W. et al. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 14, 668–673 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, H., Kim, Y. K., Kim, D. & Kang, D.-H. Switching behavior of indium selenide-based phase-change memory cell. IEEE Trans. Magn. 41, 1034–1036 (2005).

    Article  CAS  Google Scholar 

  33. Zhang, F. et al. Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3. ACS Nano 13, 8004–8011 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Ge, R. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 33, e2007792 (2020).

    Article  PubMed  Google Scholar 

  35. Lu, X. F. et al. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 21, 8800–8807 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, E. et al. Realizing electronic synapses by defect engineering in polycrystalline two-dimensional MoS2 for neuromorphic computing. ACS Appl. Mater. Interfaces 15, 15 839–15 847 (2023).

    Article  CAS  Google Scholar 

  37. Xie, J., Afshari, S. & Esqueda, I. S. Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware. npj 2D Mater. Appl. 6, 50 (2022)

  38. Wang, C.-H. et al. 3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150 °C) temperature. In 2018 IEEE International Electron Devices Meeting 22.5.1–22.5.4 (IEEE, 2018).

  39. Strand, J., Larcher, L. & Shluger, A. L. Properties of intrinsic point defects and dimers in hexagonal boron nitride. J. Phys. Condens. Matter 32, 055706 (2019). Favourable interlayer molecular bridges in multilayer hBN were identified in this study through ab initio simulations.

    Article  PubMed  Google Scholar 

  40. Ranjan, A. et al. Molecular bridges link monolayers of hexagonal boron nitride during dielectric breakdown. ACS Appl. Electron. Mater. 5, 1262–1276 (2023).

    Article  CAS  Google Scholar 

  41. Ducry, F. et al. An ab initio study on resistance switching in hexagonal boron nitride. npj 2D Mater. Appl. 6, 58 (2022).

  42. Mao, J.-Y. et al. A van der Waals integrated damage-free memristor based on layered 2D hexagonal boron nitride. Small 18, e210253 (2022).

    Article  Google Scholar 

  43. Jeong, H. et al. Resistive switching in few-layer hexagonal boron nitride mediated by defects and interfacial charge transfer. ACS Appl. Mater. Interfaces 12, 46288–46295 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, X. et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31, e1806790 (2019). The authors demonstrated a functional, forming-free monolayer-hBN RS device with an on/off ratio of 107.

    Article  PubMed  Google Scholar 

  45. Li, Y. et al. Resistive switching properties of monolayer h-BN atomristors with different electrodes. Appl. Phys. Lett. 120, 173104 (2022).

    Article  CAS  Google Scholar 

  46. Li, X.-D., Chen, N.-K., Wang, B.-Q. & Li, X.-B. Conductive mechanism in memristor at the thinnest limit: the case based on monolayer boron nitride. Appl. Phys. Lett. 121, 073505 (2022).

    Article  CAS  Google Scholar 

  47. Lee, G.-H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

    Article  Google Scholar 

  48. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Chandni, U., Watanabe, K., Taniguchi, T. & Eisenstein, J. P. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett. 15, 7329–7333 (2015). This study identified different signatures of tunnelling currents through pristine and defective hBN.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4, 348–356 (2021).

    Article  CAS  Google Scholar 

  51. Li, S. et al. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater. 34, 2103376 (2021).

    Article  Google Scholar 

  52. Yang, J. et al. Wafer-scale memristor array based on aligned grain boundaries of 2D molybdenum ditelluride for application to artificial synapses. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202309455 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015). The atomically thin nature of monolayer MoS2 was leveraged in this study to demonstrate three-terminal lateral memristors and reveal a switching mechanism based on grain-boundary migration.

    Article  CAS  PubMed  Google Scholar 

  54. Ignacio, N. D., Fatheema, J., Jeon, Y.-R. & Akinwande, D. Air-stable atomically encapsulated crystalline-crystalline phase transitions in In2Se3. Adv. Electron. Mater. 10, 2300457 (2023).

  55. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Hou, W. et al. Strain engineering of vertical molybdenum ditelluride phase-change memristors. Nat. Electron. 7, 8–16 (2024). The authors demonstrate the use of process-induced strain to bring monolayer MoTe2 close to its phase-transition boundary, allowing it to function as a phase-change memory material.

    Article  CAS  Google Scholar 

  58. He, H.-K. et al. Ultrafast and stable phase transition realized in MoTe2-based memristive devices. Mater. Horiz. 9, 1036–1044 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Q., Zhang, Y., Gao, G. & Zhang, S. Potential-driven semiconductor-to-metal transition in monolayer transition metal dichalcogenides. Adv. Funct. Mater. 33, 2208736 (2022).

  60. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Jónsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).

  62. Bon, M., Ahmad, N., Erni, R. & Passerone, D. Reliability of two embedded atom models for the description of Ag@Au nanoalloys. J. Chem. Phys. 151, 064105 (2019).

  63. Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017). The authors quantified Fermi level pinning in monolayer transition metal dichalcogenides with different metal electrodes, providing insight into energetic band alignments at metal–2D interfaces.

    Article  CAS  PubMed  Google Scholar 

  64. Shi, Y. et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS Nano 15, 9482–9494 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Shi, Y. et al. Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses. In 2017 IEEE International Electron Devices Meeting 5.4.1–5.4.4 (IEEE, 2017).

  66. Zhu, K. et al. Graphene–boron nitride–graphene cross-point memristors with three stable resistive states. ACS Appl. Mater. Interfaces 11, 37999–38 005 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, A. Forming voltage scaling of resistive switching memories. In 71st Device Research Conference 181–182 (IEEE, 2013).

  68. Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2018).

    Article  PubMed  Google Scholar 

  69. Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  PubMed  Google Scholar 

  70. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

    Article  Google Scholar 

  71. Tallis, B. Intel announces Optane Memory M15: 3D XPoint on M.2 PCIe 3.0 x4. AnandTech https://www.anandtech.com/show/14437/intel-announces-optane-memory-m15-3d-xpoint-on-m2-pcie-30-x4 (2019).

  72. Le Gallo, M. & Sebastian, A. An overview of phase-change memory device physics. J. Phys. D 53, 213002 (2020).

    Article  Google Scholar 

  73. Wu, X. et al. Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. npj 2D Mater. Appl. 6, 31 (2022).

  74. Jadwiszczak, J. et al. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13, 14262–14273 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, M. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).

    Article  CAS  Google Scholar 

  76. Davidsson, J., Bertoldo, F., Thygesen, K. S. & Armiento, R. Absorption versus adsorption: high-throughput computation of impurities in 2D materials. npj 2D Mater. Appl. 7, 26 (2023).

  77. Yoon, K. J., Kim, Y. & Hwang, C. S. What will come after V-NAND—vertical resistive switching memory? Adv. Electron. Mater. 5, 1800914 (2019).

  78. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2012).

    Article  Google Scholar 

  79. Wu, X., Ge, R., Akinwande, D. & Lee, J. C. Understanding of multiple resistance states by current sweeping in MoS2-based non-volatile memory devices. Nanotechnology 31, 465206 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ge, R. et al. Atomristors: memory effect in atomically-thin sheets and record RF switches. In 2018 IEEE International Electron Devices Meeting 22.6.1–22.6.4 (IEEE, 2018).

  82. Kim, M. et al. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 3, 479–485 (2020).

    Article  CAS  Google Scholar 

  83. Yang, S. J. et al. Volatile and nonvolatile resistive switching coexistence in conductive point hexagonal boron nitride monolayer. ACS Nano 18, 3313–3322 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. He, C. et al. Multilevel resistive switching in planar graphene/SiO2 nanogap structures. ACS Nano 6, 4214–4221 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2015).

    Article  PubMed  Google Scholar 

  86. Das, U., Bhattacharjee, S., Sarkar, P. K. & Roy, A. A multi-level bipolar memristive device based on visible light sensing MoS2 thin film. Mater. Res. Express 6, 075037 (2019).

    Article  CAS  Google Scholar 

  87. Feng, X. et al. First demonstration of a fully-printed MoS2 RRAM on flexible substrate with ultra-low switching voltage and its application as electronic synapse. In 2019 Symposium on VLSI Technology T88–T89 (IEEE, 2019).

  88. Qian, K. et al. Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26, 2176–2184 (2016).

    Article  CAS  Google Scholar 

  89. Zhang, X., Qiao, H., Nian, X., Huang, Y. & Pang, X. Resistive switching memory behaviours of MoSe2 nano-islands array. J. Mater. Sci. Mater. Electron. 27, 7609–7613 (2016).

    Article  CAS  Google Scholar 

  90. Zhou, G. et al. Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong se microwires. Appl. Phys. Lett. 109, 143904 (2016).

    Article  Google Scholar 

  91. Han, P. et al. Ag filament induced nonvolatile resistive switching memory behaviour in hexagonal MoSe2 nanosheets. J. Colloid Interf. Sci. 505, 148–153 (2017).

    Article  CAS  Google Scholar 

  92. Das, U., Mahato, B., Sarkar, P. K. & Roy, A. Bipolar resistive switching behaviour of WS2 thin films grown by chemical vapour deposition. AIP Conf. Proc. https://doi.org/10.1063/1.5113113 (2019).

  93. Rehman, M. M., Siddiqui, G. U., Doh, Y. H. & Choi, K. H. Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology. Semicond. Sci. Technol. 32, 095001 (2017).

    Article  Google Scholar 

  94. Chen, H. et al. Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors. Nanoscale 15, 4309–4316 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Aggarwal, P. et al. Synthesis of a large area ReS2 thin film by CVD for in-depth investigation of resistive switching: effects of metal electrodes, channel width and noise behaviour. Nanoscale 15, 14109–14121 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Zhuang, P. et al. Large-area multilayer molybdenum disulfide for 2D memristors. Mater. Today Nano 23, 100353 (2023).

    Article  CAS  Google Scholar 

  97. Puglisi, F. M. et al. 2D h-BN based RRAM devices. In 2016 IEEE International Electron Devices Meeting 34.8.1–34.8.4 (IEEE, 2016).

  98. Yin, L. et al. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater. 34, e2108313 (2022).

    Article  PubMed  Google Scholar 

  99. Zhang F. et al. An ultra-fast multi-level MoTe2-based RRAM. In 2018 IEEE International Electron Devices Meeting 22.7.1–22.7.4 (IEEE, 2018).

  100. Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

    Article  Google Scholar 

  101. Shen, Y. et al. Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy. Nat. Electron. 7, 856–867 (2024).

    Article  CAS  Google Scholar 

  102. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled cmos devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Article  CAS  Google Scholar 

  103. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Pam, M. E. et al. Interface-modulated resistive switching in Mo-irradiated ReS2 for neuromorphic computing. Adv. Mater. 34, e2202722 (2022).

    Article  PubMed  Google Scholar 

  105. Teja Nibhanupudi, S. S. et al. Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun 15, 2334 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Knobloch, T. et al. Improving stability in two-dimensional transistors with amorphous gate oxides by fermi-level tuning. Nat. Electron. 5, 356–366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Völkel, L. et al. Resistive switching and current conduction mechanisms in hexagonal boron nitride threshold memristors with nickel electrodes. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202300428 (2023).

  108. Passerini, E. et al. Controlling volatility and nonvolatility of memristive devices by Sn alloying. ACS Appl. Electron. Mater. 5, 6842–6849 (2023).

    Article  CAS  Google Scholar 

  109. Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.K., M.M. and M.L. acknowledge funding from the ALMOND SNSF Sinergia project (grant number 198612), the NCCR MARVEL (grant number 205602) and the Werner Siemens Stiftung Center for Single Atom Electronics and Photonics and thank the Swiss National Supercomputing Center (CSCS) for computational resources under project s1119. M.K. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate Scholarship (grant number PGS-D3). D.A. acknowledges the support of the National Science Foundation (NSF) under grant number 2422934 and the Office of Naval Research (ONR) under grant number N00014-24-1-2080. Y.-R.J. acknowledges the support of Samsung.

Author information

Authors and Affiliations

Authors

Contributions

D.A. and M.L. initiated and supervised the preparation of this paper. M.K. led the writing and design of the figures, with input and discussion from all authors. Y.-R.J. collected data for Fig. 4 and M.M. performed the nudged elastic band simulations shown in Fig. 3.

Corresponding author

Correspondence to D. Akinwande.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and computational details of the data in Fig. 3b–f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaniselvan, M., Jeon, YR., Mladenović, M. et al. Mechanisms of resistive switching in two-dimensional monolayer and multilayer materials. Nat. Mater. 24, 1346–1358 (2025). https://doi.org/10.1038/s41563-025-02170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02170-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing