Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A facile approach for generating ordered oxygen vacancies in metal oxides

Abstract

Oxygen vacancies in oxide materials, although demonstrated to be beneficial for many applications, are hard to be generated and manipulated as desired, particularly for bulk materials with a large size and limited surface area. Here, by simply coupling the thermal activation with a simultaneously applied electric field, we efficiently generate ordered oxygen vacancies within bulk crystals of ternary SrAl2O4, binary TiO2 and other common oxide materials, which give rise to superior functionalities. We expect that this approach offers a general and practical way for the vacancy engineering of oxide materials and holds great promise for their applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Creation of the ordered-VO structure in SrAl2O4 by ET treatment.
Fig. 2: Configurations of ordered VO in bulk SrAl2O4, and the effects of an electric field on the formation of an ordered-VO structure.
Fig. 3: Afterglow performance of the sample.
Fig. 4: STEM-ABF imaging for the sample.

Similar content being viewed by others

Data availability

All data and relevant information are available within the Article and its Supplementary Information. Data supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Tuller, H. L. & Bishop, S. R. Point defects in oxides: tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369–398 (2011).

    Article  CAS  Google Scholar 

  2. Mundet, B. et al. Local strain-driven migration of oxygen vacancies to apical sites in YBa2Cu3O7–x. Nanoscale 12, 5922–5931 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough, J. B. Ceramic technology—oxide-ion conductors by design. Nature 404, 821–823 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3–x. Nat. Mater. 16, 454–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lv, Y. et al. Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Appl. Catal. B 138, 26–32 (2013).

    Article  Google Scholar 

  7. Chen, X., Liu, L. & Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, G., Yang, Y., Han, D. & Li, Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today 13, 23–39 (2017).

    Article  CAS  Google Scholar 

  9. Wang, J., Chen, R., Xiang, L. & Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44, 7357–7377 (2018).

    Article  CAS  Google Scholar 

  10. Yuan, Y. et al. Ordering heterogeneity of MnO6 octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 3, 471–484 (2019).

    Article  CAS  Google Scholar 

  11. Blanc, J. & Staebler, D. L. Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4, 3548–3557 (1971).

    Article  Google Scholar 

  12. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).

  15. Li, J. et al. Orientational alignment of oxygen vacancies: electric-field- inducing conductive channels in TiO2 film to boost photocatalytic conversion of CO2 into CO. Nano Lett. 21, 5060–5067 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996).

    Article  CAS  Google Scholar 

  17. Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Rose, H. Nonstandard imaging methods in electron-microscopy. Ultramicroscopy 2, 251–267 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Q. H. et al. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5–σ. Nat. Commun. 8, 6 (2017).

  20. Maier, J. Defect chemistry: composition, transport, and recations in the solid state; Part I: thermodynamics. Angew. Chem. Int. Ed. Engl. 32, 313–335 (1993).

    Article  Google Scholar 

  21. Lu, Q. Y. et al. Electrochemically triggered metal-insulator transition between VO2 and V2O5. Adv. Funct. Mater. 28, 1803024 (2018).

  22. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6, 6097 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Onda, K., Li, B. & Petek, H. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys. Rev. B 70, 045415 (2004).

  24. Szot, K., Bihlmayer, G. & Speier, W. Nature of the resistive switching phenomena in TiO2 and SrTiO3: origin of the reversible insulator–metal transition. Solid State Phys. 65, 353–559 (2014).

    Article  Google Scholar 

  25. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Joll, K., Schienbein, P., Rosso, K. M. & Blumberger, J. J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Nat. Commun. 15, 8192 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah, A. A., Dar, A. B. & Shrivastava, M. Revisiting the origin of non-volatile resistive switching in MoS2 atomristor. npj 2D Mater. Appl. 8, 80 (2024).

    Article  CAS  Google Scholar 

  28. Rinkevicius, Z. et al. A polarizable coarse-grained model for metal, metal oxide and composite metal/metal oxide nanoparticles and its applications. Phys. Chem. Chem. Phys. 24, 27742–27750 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Nandi, S. K., Liu, X., Venkatachalam, D. K. & Elliman, R. G. Effect of electrode roughness on electroforming in HfO2 and defect-induced moderation of electric-field enhancement. Phys. Rev. Appl. 4, 064010 (2015).

    Article  Google Scholar 

  30. Zhai, B. & Huang, Y. Green afterglow of undoped SrAl2O4. Nanomaterials 11, 2331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Canaza-Mamani, E. A. et al. TL and EPR characteristics of SrAl2O4 phosphor prepared by solid‐state reaction method. J. Lumin. 245, 118585 (2022).

    Article  CAS  Google Scholar 

  32. Hoang, K. Defects and persistent luminescence in Eu-doped SrAl2O4. Phys. Rev. Appl. 19, 024060 (2023).

    Article  CAS  Google Scholar 

  33. Van den Eeckhout, K., Bos, A. J. J., Poelman, D. & Smet, P. F. Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87, 045126 (2013).

  34. Qu, B., Zhang, B., Wang, L., Zhou, R. & Zeng, X. C. Mechanistic study of the persistent luminescence of CaAl2O4:Eu,Nd. Chem. Mater. 27, 2195–2202 (2015).

    Article  CAS  Google Scholar 

  35. De Clercq, O. Q., Du, J., Smet, P. F., Joos, J. J. & Poelman, D. Predicting the afterglow duration in persistent phosphors: a validated approach to derive trap depth distributions. Phys. Chem. Chem. Phys. 20, 30455–30465 (2018).

    Article  PubMed  Google Scholar 

  36. Van den Eeckhout, K., Smet, P. F. & Poelman, D. Persistent luminescence in Eu2+-doped compounds: a review. Materials 3, 2536–2566 (2010).

    Article  PubMed Central  Google Scholar 

  37. Zeng, P., Wei, X., Yin, M. & Chen, Y. Investigation of the long afterglow mechanism in SrAl2O4:Eu2+/Dy3+ by optically stimulated luminescence and thermoluminescence. J. Lumin. 199, 400–406 (2018).

    Article  CAS  Google Scholar 

  38. Clabau, F. et al. Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem. Mater. 18, 3212–3220 (2006).

    Article  CAS  Google Scholar 

  39. Clabau, F. et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+. Chem. Mater. 17, 3904–3912 (2005).

    Article  CAS  Google Scholar 

  40. Gloter, A., Ewels, C., Umek, P., Arcon, D. & Colliex, C. Electronic structure of titania-based nanotubes investigated by EELS spectroscopy. Phys. Rev. B 80, 035413 (2009).

  41. Stoyanov, E., Langenhorst, F. & Steinle-Neumann, G. The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases. Am. Mineral. 92, 577–586 (2007).

    Article  CAS  Google Scholar 

  42. Su, T. et al. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 3754–3763 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Zou, X. et al. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chem. Eur. J. 19, 2866–2873 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kang, Q. et al. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766–5774 (2013).

    Article  CAS  Google Scholar 

  45. Han, G., Kim, J. Y., Kim, K.-J., Lee, H. & Kim, Y.-M. Controlling surface oxygen vacancies in Fe-doped TiO2 anatase nanoparticles for superior photocatalytic activities. Appl. Surf. Sci. 507, 144916 (2020).

    Article  CAS  Google Scholar 

  46. Thomas, A. G. et al. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy. Phys. Rev. B 75, 035105 (2007).

  47. Shin, J.-Y., Joo, J. H., Samuelis, D. & Maier, J. Oxygen-deficient TiO2δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543–551 (2012).

    Article  CAS  Google Scholar 

  48. Li, H.-Y. et al. Electrochemically grown nanocrystalline V2O5 as high-performance cathode for sodium-ion batteries. J. Power Sources 285, 418–424 (2015).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. Ab-initio molecular-dynamics for liquid-metals. J. Non-Cryst. Solids 193, 222–229 (1995).

    Article  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  52. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Nunes, R. W. & Gonze, X. Berry-phase treatment of the homogeneous electric field perturbation in insulators. Phys. Rev. B 63, 155107 (2001).

  55. Souza, I., Iniguez, J. & Vanderbilt, D. First-principles approach to insulators in finite electric fields. Phys. Rev. Lett. 89, 117602 (2002).

  56. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  57. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  58. Larson, A. C. & Von Dreele, R. B. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748 (1994).

Download references

Acknowledgements

We acknowledge C. Nan, L. Gu, S. Du, Z. Lin and L. Li for many discussions and helpful suggestions. R.S.-Y. acknowledges financial support from NSF DMR-1809439 for the TiO2 STEM characterizations. Use of the Advanced Photon Source (APS) 9-BM beamline at Argonne National Laboratory, Office of Science User Facility, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

K.C. conceived the idea, designed the experiments and guided the whole project. X.Y., Z.C. and G.L. synthesized the afterglow materials and performed the corresponding measurements. Z.T. and M.Z. synthesized the binary oxide samples with O defects and performed the corresponding measurements. Q.Z. carried out the electron microscopy characterizations for the SrAl2O4 sample. Y.Y. and R.S.-Y. carried out the electron microscopy characterizations for the TiO2 sample. Y.Z. and X.J. performed the first-principles calculations. T.W. and Y.Y. conducted the synchrotron analyses. All authors contributed to data interpretation and discussed the results.

Corresponding authors

Correspondence to Kexin Chen or Guanghua Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Yuan, X., Tian, Z. et al. A facile approach for generating ordered oxygen vacancies in metal oxides. Nat. Mater. 24, 835–842 (2025). https://doi.org/10.1038/s41563-025-02171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02171-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing