Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unconventional unidirectional magnetoresistance in heterostructures of a topological semimetal and a ferromagnet

Abstract

Unidirectional magnetoresistance (UMR) in a bilayer heterostructure, consisting of a spin-source material and a magnetic layer, refers to a change in the longitudinal resistance on the reversal of magnetization and originates from the interaction of non-equilibrium spin accumulation and magnetization at the interface. Since the spin polarization of an electric-field-induced non-equilibrium spin accumulation in conventional spin-source materials is restricted to be in the film plane, the ensuing UMR can only respond to the in-plane component of magnetization. However, magnets with perpendicular magnetic anisotropy are highly desired for magnetic memory and spin-logic devices, whereas the electrical read-out of perpendicular magnetic anisotropy magnets through UMR is critically missing. Here we report the discovery of an unconventional UMR in the heterostructures of a topological semimetal (WTe2) and a perpendicular magnetic anisotropy ferromagnetic insulator (Cr2Ge2Te6), which allows to electrically read the up and down magnetic states of the Cr2Ge2Te6 layer through longitudinal resistance measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WTe2–CGT devices and their characterization.
Fig. 2: AHE in WTe2–CGT devices.
Fig. 3: Unconventional UMR in WTe2–CGT devices.
Fig. 4: Absence of unconventional UMR in control device.
Fig. 5: Theoretical modelling of UMR and AHE.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available in the Article and its Supplementary Information. Further information is available from the corresponding author on reasonable request.

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  PubMed  Google Scholar 

  2. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Google Scholar 

  3. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Google Scholar 

  4. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    CAS  PubMed  Google Scholar 

  5. Nakayama, H. et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett. 117, 116602 (2016).

    PubMed  Google Scholar 

  6. Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    CAS  PubMed  Google Scholar 

  7. Lu, Y. M. et al. Hybrid magnetoresistance in the proximity of a ferromagnet. Phys. Rev. B 87, 220409 (2013).

    Google Scholar 

  8. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    CAS  Google Scholar 

  9. Lv, Y. et al. Unidirectional spin-Hall and Rashba−Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Zhang, S. S. L. & Vignale, G. Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers. Phys. Rev. B 94, 140411 (2016).

    Google Scholar 

  11. Shim, S. et al. Unidirectional magnetoresistance in antiferromagnet/heavy-metal bilayers. Phys. Rev. X 12, 021069 (2022).

    CAS  Google Scholar 

  12. Duy Khang, N. H. & Hai, P. N. Giant unidirectional spin Hall magnetoresistance in topological insulator–ferromagnetic semiconductor heterostructures. J. Appl. Phys. 126, 233903 (2019).

  13. Lv, Y. et al. Large unidirectional spin Hall and Rashba−Edelstein magnetoresistance in topological insulator/magnetic insulator heterostructures. Appl. Phys. Rev. 9, 011406 (2022).

  14. Cheng, Y. et al. Unidirectional spin Hall magnetoresistance in antiferromagnetic heterostructures. Phys. Rev. Lett. 130, 086703 (2023).

    CAS  PubMed  Google Scholar 

  15. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Google Scholar 

  16. Johansson, A., Henk, J. & Mertig, I. Edelstein effect in Weyl semimetals. Phys. Rev. B 97, 085417 (2018).

    CAS  Google Scholar 

  17. Garate, I. & Franz, M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys. Rev. Lett. 104, 146802 (2010).

    PubMed  Google Scholar 

  18. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  PubMed  Google Scholar 

  19. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  PubMed  Google Scholar 

  20. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    PubMed  Google Scholar 

  21. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    CAS  PubMed  Google Scholar 

  22. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Google Scholar 

  23. Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 800439 (2021).

    CAS  Google Scholar 

  24. Avci, C. O., Lambert, C.-H., Sala, G. & Gambardella, P. A two-terminal spin valve device controlled by spin–orbit torques with enhanced giant magnetoresistance. Appl. Phys. Lett. 119, 032406 (2021).

  25. Damerio, S. et al. Magnetoresistive detection of perpendicular switching in a magnetic insulator. Commun. Phys. 7, 114 (2024).

    CAS  Google Scholar 

  26. Sato, N., Xue, F., White, R. M., Bi, C. & Wang, S. X. Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron. 1, 508–511 (2018).

    CAS  Google Scholar 

  27. Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582–588 (2018).

    Google Scholar 

  28. Zhao, Y. et al. Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals. Phys. Rev. B 92, 041104 (2015).

    Google Scholar 

  29. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  PubMed  Google Scholar 

  30. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    CAS  PubMed  Google Scholar 

  31. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  PubMed  Google Scholar 

  32. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    CAS  Google Scholar 

  33. Kao, I. H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin–orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).

    CAS  PubMed  Google Scholar 

  34. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    CAS  PubMed  Google Scholar 

  35. de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Mogi, M. et al. Large anomalous Hall effect in topological insulators with proximitized ferromagnetic insulators. Phys. Rev. Lett. 123, 016804 (2019).

    CAS  PubMed  Google Scholar 

  37. Gupta, V. et al. Gate-tunable anomalous Hall effect in a 3D topological insulator/2D magnet van der Waals heterostructure. Nano Lett. 22, 7166–7172 (2022).

    CAS  PubMed  Google Scholar 

  38. Li, J. et al. Proximity-magnetized quantum spin Hall insulator: monolayer 1 T′ WTe2/Cr2Ge2Te6. Nat. Commun. 13, 5134 (2022).

  39. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    CAS  PubMed  Google Scholar 

  40. Avci, C. O. et al. Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Phys. Rev. B 90, 224427 (2014).

    Google Scholar 

  41. Xue, F., Rohmann, C., Li, J., Amin, V. & Haney, P. Unconventional spin-orbit torque in transition metal dichalcogenide–ferromagnet bilayers from first-principles calculations. Phys. Rev. B 102, 014401 (2020).

    CAS  Google Scholar 

  42. Garcia, J. H. et al. Canted persistent spin texture and quantum spin Hall effect in WTe2. Phys. Rev. Lett. 125, 256603 (2020).

    CAS  PubMed  Google Scholar 

  43. Zhao, W. et al. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge. Nat. Mater. 19, 503–507 (2020).

    CAS  PubMed  Google Scholar 

  44. Snoeck, E. et al. Experimental evidence of the spin dependence of electron reflections in magnetic CoFeO4/Au/Fe3O4 trilayers. Phys. Rev. B 73, 104434 (2006).

    Google Scholar 

  45. Liu, G. et al. Magnonic unidirectional spin Hall magnetoresistance in a heavy-metal–ferromagnetic-insulator bilayer. Phys. Rev. Lett. 127, 207206 (2021).

    CAS  PubMed  Google Scholar 

  46. Liu, Y. et al. Field-free switching of perpendicular magnetization at room temperature using out-of-plane spins from TaIrTe4. Nat. Electron. 6, 732–738 (2023).

    CAS  Google Scholar 

  47. Kondou, K. et al. Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet. Nat. Commun. 12, 6491 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hazra, B. K. et al. Generation of out-of-plane polarized spin current by spin swapping. Nat. Commun. 14, 4549 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    CAS  Google Scholar 

  50. Song, Q. et al. The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Adv. 6, 103830–103837 (2016).

    CAS  Google Scholar 

  51. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    CAS  Google Scholar 

  52. Zarezad, A. N., Barnaś, J., Qaiumzadeh, A. & Dyrdał, A. Bilinear planar Hall effect in topological insulators due to spin-momentum locking inhomogeneity. Phys. Status Solidi RRL 18, 2200483 (2024).

    CAS  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges financial support from the National Science Foundation (NSF) through grant no. ECCS-2208057; US Office of Naval Research under award no. N00014-23-1-2751; and the Center for Emergent Materials at The Ohio State University, an NSF MRSEC, through award no. DMR-2011876. S.S. also acknowledges financial support from the NSF CAREER Award through grant no. ECCS-2339723. J.K. acknowledges financial support from the US Office of Naval Research under award no. N00014-23-1-2751; the Center for Emergent Materials at The Ohio State University, an NSF MRSEC, through award no. DMR-2011876; and the US Department of Energy, Office of Science, Office of Basic Sciences, through award no. DE-SC0020323. J.K. also acknowledges financial support from the NSF CAREER Award under grant no. DMR-2339309. J.T. and R.C. are supported by the Air Force Office of Scientific Research under grant FA9550-19-1-0307. J.Y. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. D.G.M. acknowledges support from the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF9069. J.H. acknowledges financial support from the Center for Emergent Materials, an NSF MRSEC, through award no. DMR-2011876. Electron microscopy was performed at the Center for Electron Microscopy and Analysis at The Ohio State University. J.H.E. acknowledges support for the hBN crystal growth from the US Office of Naval Research under award no. N00014-22-1-2582. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos. 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. We also thank Ryan Muzzio for his help to prepare the schematic of the WTe2 crystal structure shown in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and J.K. supervised the research. I.-H.K. prepared the devices and performed the experiments with assistance from S.Y. J.T. and R.C. performed the theoretical and numerical calculations. G.C.O., M.Z. and J.H. performed the STEM measurements. R.R. carried out the polarized Raman measurements. J.Y. and D.G.M. provided the bulk crystals of WTe2. J.L., J.H.E., K.W. and T.T. provided the bulk hBN crystals. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Simranjeet Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Can Onur Avci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Figs. 1–23 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, IH., Tang, J., Ortiz, G.C. et al. Unconventional unidirectional magnetoresistance in heterostructures of a topological semimetal and a ferromagnet. Nat. Mater. 24, 1049–1057 (2025). https://doi.org/10.1038/s41563-025-02175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02175-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing