Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The influence of pressure on lithium dealloying in solid-state and liquid electrolyte batteries

Abstract

Dealloying reactions underpin the operation of next-generation battery electrodes and are also a synthesis route for porous metals, but the influence of mechanical stress on these processes is not well understood. Here we investigate how the applied stack pressure affects structural evolution and electrochemical reversibility during the alloying/dealloying of Li alloy materials (Li–Al, Li–Sn, Li–In and Li–Si) using solid-state and liquid electrolytes. The extent of porosity formation during the dealloying of metals is found to be universally governed by stack pressure, with pressures of at least 20% of the yield strength required to achieve ~80% relative density. This concept is correlated to the cycling of alloy electrodes in solid-state batteries, with a yield-strength-dependent threshold pressure needed for reversible high Li-storage capacity due to densification. With this understanding, we design Al and Si anodes with a densified interfacial layer enabling stable cycling at low stack pressures (2 MPa), providing guidance towards practical high-energy solid-state batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pressure effects on electrochemical alloying of metals with liquid electrolyte and SSE.
Fig. 2: Pressure effects on electrochemical dealloying of metals with liquid electrolyte and SSE.
Fig. 3: Quantifying effects of stack pressure on electrochemical dealloying of metals.
Fig. 4: Pressure effects on electrochemical alloying and dealloying of Si with liquid electrolyte and SSE.
Fig. 5: Stack pressure effects on cycling performance of alloy anodes in SSBs.
Fig. 6: Engineering interfaces to reduce the stack pressure for SSBs with alloy anodes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. McCue, I., Benn, E., Gaskey, B. & Erlebacher, J. Dealloying and dealloyed materials. Ann. Rev. Mater. Res. 46, 263–286 (2016).

    Article  CAS  Google Scholar 

  2. Weissmüller, J., Newman, R. C., Jin, H.-J., Hodge, A. M. & Kysar, J. W. Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull. 34, 577–586 (2009).

    Article  Google Scholar 

  3. Wittstock, G. et al. Nanoporous gold: from structure evolution to functional properties in catalysis and electrochemistry. Chem. Rev. 123, 6716–6792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Q. & Sieradzki, K. Mechanisms and morphology evolution in dealloying. J. Electrochem. Soc. 160, C226–C231 (2013).

    Article  CAS  Google Scholar 

  6. Weissmueller, J. & Sieradzki, K. Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull. 43, 14–19 (2018).

    Article  CAS  Google Scholar 

  7. Chen, Q. & Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102–1106 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Lewis, J. A., Cavallaro, K. A., Liu, Y. & McDowell, M. T. The promise of alloy anodes for solid-state batteries. Joule 6, 1418–1430 (2022).

    Article  CAS  Google Scholar 

  12. Liu, Y. et al. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles. Nano Lett. 11, 4188–4194 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Heligman, B. T., Scanlan, K. P. & Manthiram, A. An in-depth analysis of the transformation of tin foil anodes during electrochemical cycling in lithium-ion batteries. J. Electrochem. Soc. 168, 120544 (2021).

    Article  CAS  Google Scholar 

  14. Geng, K. & Sieradzki, K. Dealloying at high homologous temperature: morphology diagrams. J. Electrochem. Soc. 164, C330–C337 (2017).

    Article  CAS  Google Scholar 

  15. Huber, N., Viswanath, R. N., Mameka, N., Markmann, J. & Weißmüller, J. Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252–265 (2014).

    Article  CAS  Google Scholar 

  16. Jin, H.-J. et al. Deforming nanoporous metal: role of lattice coherency. Acta Mater. 57, 2665–2672 (2009).

    Article  CAS  Google Scholar 

  17. Jin, H.-J., Weissmueller, J. & Farkas, D. Mechanical response of nanoporous metals: a story of size, surface stress, and severed struts. MRS Bull. 43, 35–42 (2018).

    Article  Google Scholar 

  18. Parida, S. et al. Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97, 035504 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hirai, T., Yoshimatsu, I. & Yamaki, J. Influence of electrolyte on lithium cycling efficiency with pressurized electrode stack. J. Electrochem. Soc. 141, 611–614 (1994).

    Article  CAS  Google Scholar 

  20. Yin, X. et al. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018).

    Article  CAS  Google Scholar 

  21. Zhang, X. et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019).

    Article  CAS  Google Scholar 

  22. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  CAS  Google Scholar 

  23. Albertus, P. et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. 6, 1399–1404 (2021).

    Article  CAS  Google Scholar 

  24. Tan, D. H. S., Meng, Y. S. & Jang, J. Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective. Joule 6, 1755–1769 (2022).

    Article  CAS  Google Scholar 

  25. Wang, H. et al. The progress on aluminum-based anode materials for lithium-ion batteries. J. Mater. Chem. A 8, 25649–25662 (2020).

    Article  CAS  Google Scholar 

  26. Zheng, T., Kramer, D., Mönig, R. & Boles, S. T. Aluminum foil anodes for Li-ion rechargeable batteries: the role of Li solubility within β-LiAl. ACS Sustain. Chem. Eng. 10, 3203–3210 (2022).

    Article  CAS  Google Scholar 

  27. Webb, S. A., Baggetto, L., Bridges, C. A. & Veith, G. M. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J. Power Sources 248, 1105–1117 (2014).

    Article  CAS  Google Scholar 

  28. Heligman, B. T. & Manthiram, A. Elemental foil anodes for lithium-ion batteries. ACS Energy Lett. 6, 2666–2672 (2021).

    Article  CAS  Google Scholar 

  29. Chen, T. et al. Benchmarking the degradation behavior of aluminum foil anodes for lithium-ion batteries. Batter. Supercaps 6, e202200363 (2023).

    Article  CAS  Google Scholar 

  30. Sakka, Y. et al. Investigating plastic deformation between silicon and solid electrolyte in all-solid-state batteries using operando X-ray tomography. J. Electrochem. Soc. 171, 070536 (2024).

    Article  CAS  Google Scholar 

  31. Wu, X. et al. Operando visualization of morphological dynamics in all‐solid‐state batteries. Adv. Energy Mater. 9, 1901547 (2019).

    Article  Google Scholar 

  32. Obrovac, M. N., Christensen, L., Le, D. B. & Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849 (2007).

    Article  CAS  Google Scholar 

  33. Tarczon, J., Halperin, W., Chen, S. & Brittain, J. Vacancy-antistructure defect interaction diffusion in β-LiAl and β-LiIn. Mater. Sci. Eng. A 101, 99–108 (1988).

    CAS  Google Scholar 

  34. Jeong, W. J. et al. Electrochemical behavior of elemental alloy anodes in solid-state batteries. ACS Energy Lett. 9, 2554–2563 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCue, I., Karma, A. & Erlebacher, J. Pattern formation during electrochemical and liquid metal dealloying. MRS Bull. 43, 27–34 (2018).

    Article  CAS  Google Scholar 

  36. Wang, C., Zhu, G., Liu, P. & Chen, Q. Monolithic nanoporous Zn anode for rechargeable alkaline batteries. ACS Nano 14, 2404–2411 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Nairn, J. A. Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci. 4, 576–591 (2006).

    Google Scholar 

  38. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties (Cambridge Univ. Press, 1997).

  39. Hodge, A. M. et al. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343–1349 (2007).

    Article  CAS  Google Scholar 

  40. Liu, L.-Z., Ye, X.-L. & Jin, H.-J. Interpreting anomalous low-strength and low-stiffness of nanoporous gold: quantification of network connectivity. Acta Mater. 118, 77–87 (2016).

    Article  CAS  Google Scholar 

  41. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Berla, L. A., Lee, S. W., Cui, Y. & Nix, W. D. Mechanical behavior of electrochemically lithiated silicon. J. Power Sources 273, 41–51 (2015).

    Article  CAS  Google Scholar 

  43. Liu, Y. et al. Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries. Nat. Commun. 14, 3975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han, S. Y. et al. Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5, 2450–2465 (2021).

    Article  CAS  Google Scholar 

  45. Cangaz, S. et al. Enabling high‐energy solid‐state batteries with stable anode interphase by the use of columnar silicon anodes. Adv. Energy Mater. 10, 2001320 (2020).

    Article  CAS  Google Scholar 

  46. Cao, D. et al. Long‐cycling sulfide‐based all‐solid‐state batteries enabled by electrochemo‐mechanically stable electrodes. Adv. Mater. 34, 2200401 (2022).

    Article  CAS  Google Scholar 

  47. Lee, J. et al. Dry pre‐lithiation for graphite‐silicon diffusion‐dependent electrode for all‐solid‐state battery. Adv. Energy Mater. 13, 2300172 (2023).

    Article  CAS  Google Scholar 

  48. Huo, H. et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23, 543–551 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto, M., Terauchi, Y., Sakuda, A., Kato, A. & Takahashi, M. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries. J. Power Sources 473, 228595 (2020).

    Article  CAS  Google Scholar 

  50. Kim, J. Y. et al. Graphite–silicon diffusion‐dependent electrode with short effective diffusion length for high‐performance all‐solid‐state batteries. Adv. Energy Mater. 12, 2103108 (2022).

    Article  CAS  Google Scholar 

  51. Xu, X. et al. Nano silicon anode without electrolyte adding for sulfide‐based all‐solid‐state lithium‐ion batteries. Small 19, 2302934 (2023).

    Article  CAS  Google Scholar 

  52. Fan, Z. et al. In-situ prelithiation of electrolyte-free silicon anode for sulfide all-solid-state batteries. eTransportation 18, 100277 (2023).

    Article  Google Scholar 

  53. Cao, D. et al. Unveiling the mechanical and electrochemical evolution of nanosilicon composite anodes in sulfide‐based all‐solid‐state batteries. Adv. Energy Mater. 13, 2203969 (2023).

    Article  CAS  Google Scholar 

  54. Zhou, L. et al. Li3–xZrx(Ho/Lu)1–xCl6 solid electrolytes enable ultrahigh-loading solid-state batteries with a prelithiated Si anode. ACS Energy Lett. 8, 3102–3111 (2023).

    Article  CAS  Google Scholar 

  55. Luo, S. et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, Y., Shao, B. & Han, F. Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J. Mater. Chem. A 10, 12350–12358 (2022).

    Article  CAS  Google Scholar 

  57. Fan, Z. et al. Long‐cycling all‐solid‐state batteries achieved by 2D interface between prelithiated aluminum foil anode and sulfide electrolyte. Small 18, 2204037 (2022).

    Article  CAS  Google Scholar 

  58. Pan, H. et al. Carbon-free and binder-free Li–Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Science Foundation, award no. DMR-2209202 (M.T.M.). Partial support is acknowledged from Novelis Inc. This work was performed in part at the Georgia Tech Institute for Matter and Systems, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (ECCS-2025462).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.W. and M.T.M. Methodology: C.W. Investigation: C.W., Y.L., W.J.J., T.C., M.L., D.L.N., E.P.A., S.G.Y. and K.A.C. Formal analysis: C.W., M.L., S.X. and M.T.M. Validation: C.W. and M.T.M. Writing—original draft: C.W. Writing—review and editing: C.W., S.D., D.M., R.G., S.X. and M.T.M. Visualization: C.W. and M.T.M. Project administration: S.D., D.M., R.G. and M.T.M. Resources: M.T.M. Supervision: M.T.M. Funding acquisition: M.T.M.

Corresponding author

Correspondence to Matthew T. McDowell.

Ethics declarations

Competing interests

C.W., Y.L., T.C., S.D., D.M., R.G. and M.T.M. are inventors on patent applications related to alloy anode materials for Li batteries. The other authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Yuki Orikasa, Haoshen Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pressure effects on Li trapping behaviour during electrochemical dealloying of metals with liquid and solid-state electrolytes.

Trapped Li capacity versus applied stack pressure \(\sigma\) during electrochemical dealloying of the three metals in liquid electrolyte (a) and solid-state electrolyte (b). The trapped Li capacity was measured from the Li dealloying current curves in Fig. 2a–c and normalized to the lithiation capacity measured from the Li alloying curves in Fig. 1a–c.

Extended Data Fig. 2 The influence of the dealloying rate using solid-state electrolyte on morphology evolution.

a, XRD characterization of In electrodes after galvanostatic dealloying at different current densities using the same stack pressure (1 MPa). bd, Cross-sectional SEM images of In electrodes after galvanostatic dealloying at different current densities under 1 MPa of stack pressure. All scale bars are 1 µm.

Extended Data Fig. 3 In situ stack pressure measurement of a cell with a Si wafer electrode during alloying and dealloying using SSE at 2 MPa stack pressure.

a, Galvanostatic voltage curve from the alloying of a Si wafer working electrode along with measured stress in the cell. A current density of 0.1 mA cm−2 was used. b, Current density curve from potentiostatic dealloying (1.0 V versus Li/Li+) of a Si wafer electrode along with measured stress in the cell. A LiIn counter electrode was used in both cases.

Extended Data Fig. 4 Pressure effects on relative density and Li trapping behaviour during electrochemical dealloying of Si with liquid and solid-state electrolytes.

a, Measured relative density \(\varphi\) versus applied stack pressure \(\sigma\) during electrochemical dealloying of Si. Relative density and error bars were calculated based on measurements at 10 different positions. Data in (a) are presented as mean values ± the standard error of the mean, where the number of replicates (n) is 10. b, Trapped Li capacity versus applied stack pressure \(\sigma\) during electrochemical dealloying of Si. The trapped Li capacity was measured from the Li dealloying current curves in Fig. 4d and normalized to the lithiation capacity measured from the Li alloying curves in Fig. 4a.

Extended Data Fig. 5 EDS maps of the Al and Si anodes with In coating.

a, b, Al. c, d, Si. All scale bars are 5 µm.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–4, Equations (1) and (2) and References.

Source data

Source Data Fig. 1

Source data for the electrochemical tests shown in Fig. 1, including dealloying of Li from various metal electrodes in liquid electrolytes and SSEs.

Source Data Fig. 2

Source data for the electrochemical tests shown in Fig. 2, including dealloying of Li from various metal electrolytes in liquid electrolytes and SSEs.

Source Data Fig. 4

Source data for the electrochemical tests shown in Fig. 4, including the electrochemical lithiation and dealloying data for silicon electrodes.

Source Data Fig. 5

Source data for the electrochemical tests shown in Fig. 5, including the galvanostatic charge–discharge and cycling data of Al, Sn, In and Si electrodes in SSBs at different stack pressures.

Source Data Fig. 6

Source data for the electrochemical tests shown in Fig. 6, including the electrochemical cycling behaviour of Al and Si electrodes with In coatings.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, Y., Jeong, W.J. et al. The influence of pressure on lithium dealloying in solid-state and liquid electrolyte batteries. Nat. Mater. 24, 907–916 (2025). https://doi.org/10.1038/s41563-025-02198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02198-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing