Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA photofluids show life-like motion

Abstract

As active matter, cells exhibit non-equilibrium structures and behaviours such as reconfiguration, motility and division. These capabilities arise from the collective action of biomolecular machines continuously converting photoenergy or chemical energy into mechanical energy. Constructing similar dynamic processes in vitro presents opportunities for developing life-like intelligent soft materials. Here we report an active fluid formed from the liquid–liquid phase separation of photoresponsive DNA nanomachines. The photofluids can orchestrate and amplify nanoscale mechanical movements by orders of magnitude to produce macroscopic cell-like behaviours including elongation, division and rotation. We identify two dissipative processes in the DNA droplets, photoalignment and photofibrillation, which are crucial for harnessing stochastic molecular motions cooperatively. Our results demonstrate an active liquid molecular system that consumes photoenergy to create ordered out-of-equilibrium structures and behaviours. This system may help elucidate the physical principles underlying cooperative motion in active matter and pave the way for developing programmable interactive materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photon-fuelled DNA nanomachines and reversible assembly of DNA droplets.
Fig. 2: Vis-light-fuelled deformations of the active DNA droplets.
Fig. 3: Photoinduced fibrillation inside DNA droplets.
Fig. 4: Cell-like motions in active DNA droplets via spatiotemporal Vis irradiation.
Fig. 5: Photofluids support macroscopic actuation on Vis irradiation.

Similar content being viewed by others

Data availability

All data generated during this study are included in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Moulin, E., Faour, L., Carmona-Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli-responsive materials. Adv. Mater. 32, 1906036 (2020).

    Article  CAS  Google Scholar 

  4. Xu, F. & Feringa, B. L. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv. Mater. 35, 2204413 (2023).

    Article  CAS  Google Scholar 

  5. Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Popkin, G. The physics of life. Nature 529, 16–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    Article  CAS  Google Scholar 

  8. Köhler, S., Schaller, V. & Bausch, A. R. Structure formation in active networks. Nat. Mater. 10, 462–468 (2011).

    Article  PubMed  Google Scholar 

  9. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Ndlec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  Google Scholar 

  11. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adkins, R. et al. Dynamics of active liquid interfaces. Science 377, 768–772 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, K.-T. et al. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355, eaal1979 (2017).

    Article  PubMed  Google Scholar 

  14. Tayar, A. M. et al. Controlling liquid–liquid phase behaviour with an active fluid. Nat. Mater. 22, 1401–1408 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Keya, J. J. et al. DNA-assisted swarm control in a biomolecular motor system. Nat. Commun. 9, 453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross, T. D. et al. Controlling organization and forces in active matter through optically defined boundaries. Nature 572, 224–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Nitta, T., Wang, Y., Du, Z., Morishima, K. & Hiratsuka, Y. A printable active network actuator built from an engineered biomolecular motor. Nat. Mater. 20, 1149–1155 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Wollman, A. J. M., Sanchez-Cano, C., Carstairs, H. M. J., Cross, R. A. & Turberfield, A. J. Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nat. Nanotechnol. 9, 44–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotechnol. 13, 304–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Hou, J. et al. Phototriggered complex motion by programmable construction of light-driven molecular motors in liquid crystal networks. J. Am. Chem. Soc. 144, 6851–6860 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lan, R. et al. Amplifying molecular scale rotary motion: the marriage of overcrowded alkene molecular motor with liquid crystals. Adv. Mater. 34, 2109800 (2022).

    Article  CAS  Google Scholar 

  28. Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  PubMed  Google Scholar 

  31. Samperi, M. et al. Light-controlled micron-scale molecular motion. Nat. Chem. 13, 1200–1206 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Sato, Y., Sakamoto, T. & Takinoue, M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Sci. Adv. 6, eaba3471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, Q.-H., Cao, F.-H., Luo, Z.-H., Huck, W. T. S. & Deng, N.-N. Photoswitchable molecular communication between programmable DNA-based artificial membraneless organelles. Angew. Chem. Int. Ed. 61, e202117500 (2022).

    Article  CAS  Google Scholar 

  35. Samanta, A., Baranda Pellejero, L., Masukawa, M. & Walther, A. DNA-empowered synthetic cells as minimalistic life forms. Nat. Rev. Chem. 8, 454–470 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Ramezani, H. & Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Kang, H. et al. Single-DNA molecule nanomotor regulated by photons. Nano Lett. 9, 2690–2696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Pang, X., Lv, J.-a, Zhu, C., Qin, L. & Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 31, 1904224 (2019).

    Article  CAS  Google Scholar 

  40. Kamiya, Y. & Asanuma, H. Light-driven DNA nanomachine with a photoresponsive molecular engine. Acc. Chem. Res. 47, 1663–1672 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Lubbe, A. S., Szymanski, W. & Feringa, B. L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev. 46, 1052–1079 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Oscurato, S. L., Salvatore, M., Maddalena, P. & Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 7, 1387–1422 (2018).

    Article  CAS  Google Scholar 

  43. Hong, S. K. & Shu, Y. Photopatterning via photofluidization of azobenzene polymers. Light Adv. Manuf. 3, 65–84 (2022).

    Google Scholar 

  44. Lv, J.-a et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Ludwanowski, S. et al. Wavelength-gated adaptation of hydrogel properties via photo-dynamic multivalency in associative star polymers. Angew. Chem. Int. Ed. 60, 4358–4367 (2021).

    Article  CAS  Google Scholar 

  46. Wu, Y., Ikeda, T. & Zhang, Q. Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light. Adv. Mater. 11, 300–302 (1999).

    Article  CAS  Google Scholar 

  47. Zhou, L., Retailleau, P., Morel, M., Rudiuk, S. & Baigl, D. Photoswitchable fluorescent crystals obtained by the photoreversible coassembly of a nucleobase and an azobenzene intercalator. J. Am. Chem. Soc. 141, 9321–9329 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Fuentes, E. et al. An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J. Am. Chem. Soc. 142, 10069–10078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang, M.-Y., Ariyama, H., Huck, W. T. S. & Deng, N.-N. Division in synthetic cells. Chem. Soc. Rev. 52, 3307–3325 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  CAS  Google Scholar 

  51. Litchinitser, N. M. Structured light meets structured matter. Science 337, 1054–1055 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl. 8, 90 (2019).

    Article  PubMed  Google Scholar 

  53. Opathalage, A. et al. Self-organized dynamics and the transition to turbulence of confined active nematics. Proc. Natl Acad. Sci. USA 116, 4788–4797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fabrini, G. et al. Co-transcriptional production of programmable RNA condensates and synthetic organelles. Nat. Nanotechnol. 19, 1665–1673 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu, H. et al. Supramolecular polymers form tactoids through liquid–liquid phase separation. Nature 626, 1011–1018 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai, Y., You, L. & Chilkoti, A. Engineering synthetic biomolecular condensates. Nat. Rev. Bioeng. 1, 466–480 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanghai (grant 22ZR1429000 to N.-N.D.), Sichuan Science and Technology Program (2025ZNSFSC0335 to N.-N.D.), National Natural Science Foundation of China (grants 22278264 to N.-N.D. and 22307074 to Q.H.Z.), Sichuan Emei talent plan (2017 to N.-N.D.) and Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering (grant JDSX2022047 to N.-N.D.).

Author information

Authors and Affiliations

Authors

Contributions

N.-N.D. supervised the research. N.-N.D. conceived the research and designed the experiments. Q.-H.Z. and J.-Y.Q. performed the experiments. N.-N.D. and Q.-H.Z. analysed the data. N.-N.D. wrote the paper. All authors approved the manuscript.

Corresponding author

Correspondence to Nan-Nan Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jiawen Chen and Andreas Walther for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–7 and captions for Supplementary Videos 1–14.

Supplementary Video 1

UV-induced vesicular dissolution of DNA droplets.

Supplementary Video 2

Vis-induced reassembly of DNA droplets by LLPS.

Supplementary Video 3

Unpolarized Vis-light-fuelled elongation of active DNA droplets and shape recovery.

Supplementary Video 4

Reconstructed 3D confocal images showing 2D liquid slices of the active DNA droplets deformed by linearly polarized Vis light.

Supplementary Video 5

Thermo-induced vesicular dissolution of active DNA droplets.

Supplementary Video 6

Deformation of active DNA droplets into linear patterns under laser illumination.

Supplementary Video 7

Photoinduced fibrillation process from unassociated Y-motifs.

Supplementary Video 8

Fibrillar DNA aggregates spontaneously transform into spherical DNA droplets when Vis illumination stops.

Supplementary Video 9

LLPS of Y-motifs into tactoid-like anisotropic liquid droplets.

Supplementary Video 10

Cell-like extending pseudopodium in active DNA droplets.

Supplementary Video 11

Cell-like division in active DNA droplets.

Supplementary Video 12

Rotation of DNA liquid rods in response to the changes in the polarization direction of the incident light.

Supplementary Video 13

Photofluids for actuating the deformations of ternary Janus droplets.

Supplementary Video 14

Photoactive DNA microfilaments induce flow turbulence in W/O droplets.

Source Data for Supplementary Fig. 3

Statistical source data.

Source Data for Supplementary Fig. 4

Statistical source data.

Source Data for Supplementary Fig. 5

Statistical source data.

Source Data for Supplementary Fig. 7

Statistical source data.

Source Data for Supplementary Fig. 12

Statistical source data.

Source Data for Supplementary Fig. 17

Statistical source data.

Source Data for Supplementary Fig. 21

Statistical source data.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, QH., Qi, JY. & Deng, NN. DNA photofluids show life-like motion. Nat. Mater. 24, 935–944 (2025). https://doi.org/10.1038/s41563-025-02202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02202-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing