Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale phonon dynamics in self-assembled nanoparticle lattices

Abstract

Geometry and topology endow mechanical frames with unusual properties from shape morphing to phonon wave manipulation, enabling emerging technologies. Despite important advances in macroscopic frames, the realization and phonon imaging of nanoscale mechanical metamaterials has remained challenging. Here we extend the principle of topologically engineered mechanical frames to self-assembled nanoparticle lattices, resolving phonon dynamics using liquid-phase transmission electron microscopy. The vibrations of nanoparticles in Maxwell lattices are used to measure properties that have been difficult to obtain, such as phonon band structures, nanoscale spring constants and nonlinear lattice deformation paths. Studies of five different lattices reveal that these properties are modulated by nanoscale colloidal interactions. Our discrete mechanical model and simulations capture these interactions and the critical role of effects beyond nearest neighbours, bridging mechanical metamaterials with nanoparticle self-assembly. Our study provides opportunities for understanding and manufacturing self-assembled nanostructures for phonon manipulation, offering solution processability, transformability and emergent functions at underexplored scales of length, frequency and energy density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Self-assembled Maxwell lattice from gold nanocubes with structural degeneracy.
Fig. 2: Direct imaging of phonon dynamics and integrated theoretical framework to extract phonon band structures using PMN.
Fig. 3: Effect of inter-NP interactions and lattice types on phonon band structures and spring constants.
Fig. 4: PMN analysis of differently sized sublattices to show the fast convergence of phonon band structure and spring constant measurement at small systems.
Fig. 5: Collective deformation paths of Maxwell lattices upon thermal agitation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via GitHub at https://github.com/chenlabUIUC/Phonon-mapping-nanoscopy.

Code availability

The codes for the PMN analysis and BD simulations developed in this study are available via GitHub at https://github.com/chenlabUIUC/Phonon-mapping-nanoscopy.

References

  1. Versaci, A. & Cardaci, A. The MAXXI Museum in Rome: an integrated survey experience for the restoration of contemporary architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 187–194 (2017).

    Article  Google Scholar 

  2. Hajiesmaili, E., Larson, N. M., Lewis, J. A. & Clarke, D. R. Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators. Sci. Adv. 8, eabn9198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ni, X., Yves, S., Krasnok, A. & Alu, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Xie, B. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).

    Article  Google Scholar 

  5. Xu, Z., Tong, J., Cui, T. J., Chang, J. & Sievenpiper, D. F. Near-field chiral excitation of universal spin-momentum locking transport of edge waves in microwave metamaterials. Adv. Photonics 4, 046004 (2022).

    Article  Google Scholar 

  6. Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. 27, 294–299 (1864).

    Article  Google Scholar 

  7. Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).

    Article  Google Scholar 

  8. Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40–44 (2017).

    Article  Google Scholar 

  9. Rocklin, D. Z., Zhou, S., Sun, K. & Mao, X. Transformable topological mechanical metamaterials. Nat. Commun. 8, 14201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, W. et al. Stiff isotropic lattices beyond the Maxwell criterion. Sci. Adv. 5, eaaw1937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Q. et al. Mechanical nanolattices printed using nanocluster-based photoresists. Science 378, 768–773 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Groß, M. F. et al. Tetramode metamaterials as phonon polarizers. Adv. Mater. 35, e2211801 (2023).

    Article  PubMed  Google Scholar 

  13. Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).

    Article  CAS  Google Scholar 

  14. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Michelson, A. et al. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 376, 203–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y. et al. Ultrastrong colloidal crystal metamaterials engineered with DNA. Sci. Adv. 9, eadj8103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michelson, A., Flanagan, T. J., Lee, S.-W. & Gang, O. High-strength, lightweight nano-architected silica. Cell Rep. Phys. Sci. 4, 101475 (2023).

    Article  CAS  Google Scholar 

  18. Jansen, M., Tisdale, W. A. & Wood, V. Nanocrystal phononics. Nat. Mater. 22, 161–169 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Still, T. et al. Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films. Phys. Rev. Lett. 100, 194301 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, Y. et al. Cu-catalyzed synthesis of CdZnSe–CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 31, 2635–2643 (2019).

    Article  CAS  Google Scholar 

  25. Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article  Google Scholar 

  26. Ma, J., Zhou, D., Sun, K., Mao, X. & Gonella, S. Edge modes and asymmetric wave transport in topological lattices: experimental characterization at finite frequencies. Phys. Rev. Lett. 121, 094301 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Arzash, S., Sharma, A. & MacKintosh, F. C. Mechanics of fiber networks under a bulk strain. Phys. Rev. E 106, L062403 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keim, P., Maret, G., Herz, U. & von Grunberg, H. H. Harmonic lattice behavior of two-dimensional colloidal crystals. Phys. Rev. Lett. 92, 215504 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Mao, X., Chen, Q. & Granick, S. Entropy favours open colloidal lattices. Nat. Mater. 12, 217–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, G. et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 590, 416–422 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Article  PubMed  Google Scholar 

  35. Kim, H. et al. Direct observation of polymer surface mobility via nanoparticle vibrations. Nat. Commun. 9, 2918 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rocklin, D. Z., Hsiao, L., Szakasits, M., Solomon, M. J. & Mao, X. Elasticity of colloidal gels: structural heterogeneity, floppy modes, and rigidity. Soft Matter 17, 6929–6934 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Elbert, K. C. et al. Anisotropic nanocrystal shape and ligand design for co-assembly. Sci. Adv. 7, eabf9402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gantapara, A. P., de Graaf, J., van Roij, R. & Dijkstra, M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013).

    Article  PubMed  Google Scholar 

  41. Avendaño, C. & Escobedo, F. A. Phase behavior of rounded hard-squares. Soft Matter 8, 4675 (2012).

    Article  Google Scholar 

  42. Henkes, S., Brito, C. & Dauchot, O. Extracting vibrational modes from fluctuations: a pedagogical discussion. Soft Matter 8, 6092–6109 (2012).

    Article  CAS  Google Scholar 

  43. Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Lewis, D. J., Carter, D. J. D. & Macfarlane, R. J. Using DNA to control the mechanical response of nanoparticle superlattices. J. Am. Chem. Soc. 142, 19181–19188 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Wei, J. et al. Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, Q. et al. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 10, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Song, M. et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367, 40–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, H., Ruiz, P. S. & Ni, R. Entropy stabilizes floppy crystals of mobile DNA-coated colloids. Phys. Rev. Lett. 120, 048003 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Stukowski, A., Albe, K. & Farkas, D. Nanotwinned fcc metals: Strengthening versus softening mechanisms. Phys. Rev. B 82, 224103 (2010).

    Article  Google Scholar 

  50. Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins Struct. Funct. Bioinform. 44, 150–165 (2001).

    Article  CAS  Google Scholar 

  51. Charara, M., McInerney, J., Sun, K., Mao, X. & Gonella, S. Omnimodal topological polarization of bilayer networks: Analysis in the Maxwell limit and experiments on a 3D-printed prototype. Proc. Natl Acad. Sci. USA 119, e2208051119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    Article  PubMed  Google Scholar 

  53. Ye, X., Zheng, C., Chen, J., Gao, Y. & Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 13, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci. 6, 1421–1430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Experiments and theoretical modelling for the equilibrium NP self-assemblies in this work were supported by the Office of Naval Research under award number MURI N00014-20-1-2479 (C.Q., E.S., J.L., X.M. and Q.C.). Validation analysis of non-equilibrium self-assemblies were supported by US National Science Foundation under Cooperative Agreement No. 2243104, “Center for Complex Particle Systems (COMPASS)” Science and Technology Center (P.P. and Q.C.). The BD simulation effort of this work integrated with experiment was supported by the Defense Established Program to Stimulate Competitive Research (DEPSCoR) grant no. FA9550-20-1-0072 (Z.M. and W.P.) and Army Research Office grant no. W911NF2310256 (Z.M., Q.C. and W.P.). We thank Nicholas A. Kotov and Roberto Merlin for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.Q. and Q.C. designed the experiments. C.Q. and B.L. performed the experiments. C.Q., L.Y., C.L. and Q.C. carried out the CG modelling and single-particle tracking analysis. E.S. and X.M. developed the discrete mechanical model and theory. C.Q., J.L., P.P. and E.S. performed the PMN analysis. Z.M. and W.P. performed the BD simulations with ML-based inter-NP interaction modelling. C.Q. and Q.C. wrote the first draft of the paper. All authors contributed to the writing of the paper. Q.C., X.M. and W.P. supervised the work.

Corresponding authors

Correspondence to Wenxiao Pan, Xiaoming Mao or Qian Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Notes 1–14, Tables 1–15, Figs. 1–31, captions for Supplementary Videos 1–5 and References.

Supplementary Video 1

Synchronized liquid-phase TEM video showing the self-assembly of a rhombic Maxwell lattice from colloidal gold nanocubes. Left, the liquid-phase TEM video with tracked centroid positions of individual cubes (yellow) overlaid. Right, the bond network constructed from the centroid positions. Rhombuses are coloured according to θtilt. The video was captured at I = 22 mM; playback is at 10 f.p.s., real time. Dose rate: 10.9 e Å−2 s−1. Scale bars, 300 nm.

Supplementary Video 2

BD simulation of square-to-rhombic lattice relaxation. The simulation starts from an initial configuration of 81 cubes organized on a two-dimensional square lattice at I = 22 mM. Left: the mean θtilt (± s.d.) of the BD system (as shown on the right) plotted on the inter-NP interaction energy curve derived from CG interaction modelling to trace the relaxation dynamics from a metastable square lattice to the stable rhombic lattice. Right: BD simulation of the cube assembly. Cubes are represented by black squares. Rhombuses are coloured according to θtilt. After ~1,500 simulation steps, the system relaxes into a rhombic lattice of θ = 80°.

Supplementary Video 3

Workflow of PMN analysis. The liquid-phase TEM video was captured at I = 22 mM; playback is at 10 f.p.s., real time. Dose rate: 10.9 e Å−2 s−1. Scale bars, 200 nm.

Supplementary Video 4

Liquid-phase TEM videos of the Maxwell lattice regions for the PMN analysis. Two selected liquid-phase TEM video regions of different ionic strengths used for the PMN analysis, overlaid with tracked centroid positions and trajectories of single NPs after drift correction (coloured according to the elapsed time). Dose rates: 10.9 e Å−2 s−1 for I = 27 mM; 14.4 e Å−2 s−1 for I = 110 mM. Scale bars, 100 nm.

Supplementary Video 5

Liquid-phase TEM video showing deformation paths of TB migration. Liquid-phase TEM video (left) overlaid with tracked centroid positions of particles (yellow), synchronized with the bond network and rhombuses coloured according to θtilt (right, same colour scale as in Fig. 5a). TBs are noted by the green lines to highlight the migration. The video is captured using a K2 direct electron detector camera in IS mode at 400 f.p.s.; playback is at 10 f.p.s., which is 0.05 × real time. Dose rate: 10.2 e Å−2 s−1. I = 22 mM. Scale bars, 200 nm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Stanifer, E., Ma, Z. et al. Nanoscale phonon dynamics in self-assembled nanoparticle lattices. Nat. Mater. 24, 1616–1625 (2025). https://doi.org/10.1038/s41563-025-02253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02253-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing