Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetry-protected electronic metastability in an optically driven cuprate ladder

Abstract

Optically excited quantum materials exhibit non-equilibrium states with remarkable emergent properties, but these phenomena are usually transient, decaying on picosecond timescales and limiting practical applications. Advancing the design and control of non-equilibrium phases requires the development of targeted strategies to achieve long-lived, metastable phases. Here we report the discovery of symmetry-protected electronic metastability in the model cuprate ladder Sr14Cu24O41. Using femtosecond resonant X-ray scattering and spectroscopy, we show that this metastability is driven by a transfer of holes from chain-like charge reservoirs into the ladders. This ultrafast charge redistribution arises from the optical dressing and activation of a hopping pathway that is forbidden by symmetry at equilibrium. Relaxation back to the ground state is, hence, suppressed after the pump coherence dissipates. Our findings highlight how dressing materials with electromagnetic fields can dynamically activate terms in the electronic Hamiltonian, and provide a rational design strategy for non-equilibrium phases of matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and electronic phases of Sr14Cu24O41.
Fig. 2: Observation of light-induced metastability.
Fig. 3: Metastable charge order suppression.
Fig. 4: Spectroscopic evidence of metastable chain-to-ladder hole transfer.
Fig. 5: Transient magnetic excitation spectrum and onset of electronic metastability.
Fig. 6: Light-induced activation of a symmetry-forbidden tunnelling pathway.

Similar content being viewed by others

Data availability

The data that support the findings of this study are present in the article and its Supplementary Information. Source data for figures in the main text are available via Figshare at https://doi.org/10.6084/m9.figshare.28851200.v1. Any additional data are available from the corresponding authors upon request.

Code availability

The codes used for DMRG and CuO6 cluster calculations are available from the corresponding authors upon request.

References

  1. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch States on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Shin, D. et al. Phonon-driven spin-Floquet magneto-valleytronics in MoS2. Nat. Commun. 9, 638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  CAS  Google Scholar 

  6. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koshihara, S., Tokura, Y., Mitani, T., Saito, G. & Koda, T. Photoinduced valence instability in the organic molecular compound tetrathiafulvalene-p-chloranil (TTF-CA). Phys. Rev. B 42, 6853–6856 (1990).

    Article  CAS  Google Scholar 

  9. Kiryukhin, V. et al. An X-ray-induced insulator–metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997).

    Article  CAS  Google Scholar 

  10. Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3. Science 280, 1925–1928 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Stoica, V. et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat. Mater. 18, 377–383 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Cremin, K. A. et al. Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.885Ba0.115CuO4. Proc. Natl Acad. Sci. USA 116, 19875–19879 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Disa, A. et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 617, 73–78 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611–618 (2021).

    Article  CAS  Google Scholar 

  19. Vogelgesang, S. et al. Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction. Nat. Phys. 14, 184–190 (2018).

    Article  CAS  Google Scholar 

  20. Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2019).

    Article  CAS  Google Scholar 

  21. Gerasimenko, Y. A. et al. Quantum jamming transition to a correlated electron glass in 1T-TaS2. Nat. Mater. 18, 1078–1083 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. von der Linde, D., Glass, A. M. & Rodgers, K. F. Multiphoton photorefractive processes for optical storage in LiNbO3. Appl. Phys. Lett. 25, 155–157 (1974).

    Article  Google Scholar 

  23. Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic Cr2O3. Nat. Mater. 23, 790–795 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

  25. Sato, S. A. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 (2019).

    Article  CAS  Google Scholar 

  26. Lenarčič, Z., Eckstein, M. & Prelovšek, P. Exciton recombination in one-dimensional organic Mott insulators. Phys. Rev. B 92, 201104 (2015).

    Article  Google Scholar 

  27. Mitrano, M. et al. Pressure-dependent relaxation in the photoexcited Mott insulator ET –F2TCNQ: influence of hopping and correlations on quasiparticle recombination rates. Phys. Rev. Lett. 112, 117801 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Ono, M. et al. Linear and nonlinear optical properties of one-dimensional Mott insulators consisting of Ni-halogen chain and CuO-chain compounds. Phys. Rev. B 70, 085101 (2004).

    Article  Google Scholar 

  29. Osafune, T., Motoyama, N., Eisaki, H. & Uchida, S. Optical study of the Sr14−xCaxCu24O41 system: evidence for hole-doped Cu2O3 ladders. Phys. Rev. Lett. 78, 1980 (1997).

    Article  CAS  Google Scholar 

  30. Nücker, N. et al. Hole distribution in (Sr,Ca,Y,La)14Cu24O41 ladder compounds studied by X-ray absorption spectroscopy. Phys. Rev. B 62, 14384 (2000).

    Article  Google Scholar 

  31. Abbamonte, P. et al. Crystallization of charge holes in the spin ladder of Sr14Cu24O41. Nature 431, 1078–1081 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Vuletić, T. et al. The spin-ladder and spin-chain system (La,Y,Sr,Ca)14Cu24O41: electronic phases, charge and spin dynamics. Phys. Rep. 428, 169–258 (2006).

    Article  Google Scholar 

  33. Uehara, M. et al. Superconductivity in the ladder material Sr0.4Ca13.6Cu24O41.84. J. Phys. Soc. Jpn 65, 2764–2767 (1996).

    Article  CAS  Google Scholar 

  34. Fukaya, R. et al. Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system. Nat. Commun. 6, 8519 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Vuletić, T. et al. Suppression of the charge-density-wave state in Sr14Cu24O41 by calcium doping. Phys. Rev. Lett. 90, 257002 (2003).

    Article  PubMed  Google Scholar 

  36. Mitrano, M. et al. Ultrafast time-resolved X-ray scattering reveals diffusive charge order dynamics in La2−xBaxCuO4. Sci. Adv. 5, eaax3346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, M.-J. et al. Determination of hole distribution in Sr14−xCaxCu24O41 using soft X-ray absorption spectroscopy at the Cu L3 edge. Phys. Rev. B 88, 014520 (2013).

    Article  Google Scholar 

  38. Hammel, P. et al. Localized holes in superconducting lanthanum cuprate. Phys. Rev. B 57, R712 (1998).

    Article  CAS  Google Scholar 

  39. Tseng, Y. et al. Crossover of high-energy spin fluctuations from collective triplons to localized magnetic excitations in Sr14−xCaxCu24O41 ladders. npj Quantum Mater. 7, 92 (2022).

    Article  CAS  Google Scholar 

  40. Dagotto, E., Riera, J. & Scalapino, D. Superconductivity in ladders and coupled planes. Phys. Rev. B 45, 5744 (1992).

    Article  CAS  Google Scholar 

  41. Schlappa, J. et al. Collective magnetic excitations in the spin ladder Sr14Cu24O41 measured using high-resolution resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 047401 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Kumar, U., Nocera, A., Dagotto, E. & Johnston, S. Theoretical study of the spin and charge dynamics of two-leg ladders as probed by resonant inelastic X-ray scattering. Phys. Rev. B 99, 205130 (2019).

    Article  CAS  Google Scholar 

  43. Gotoh, Y. et al. Structural modulation, hole distribution, and hole-ordered structure of the incommensurate composite crystal (Sr2Cu2O3)0.70CuO2. Phys. Rev. B 68, 224108 (2003).

    Article  Google Scholar 

  44. Deng, G. et al. Structural evolution of one-dimensional spin-ladder compounds Sr14−xCaxCu24O41 with Ca doping and related evidence of hole redistribution. Phys. Rev. B 84, 144111 (2011).

    Article  Google Scholar 

  45. Rusydi, A. et al. Quantum melting of the hole crystal in the spin ladder of Sr14−xCaxCu24O41. Phys. Rev. Lett. 97, 016403 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gedik, N., Yang, D.-S., Logvenov, G., Bozovic, I. & Zewail, A. H. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Mansart, B. et al. Temperature-dependent electron-phonon coupling in La2−xSrxCuO4 probed by femtosecond X-ray diffraction. Phys. Rev. B 88, 054507 (2013).

    Article  Google Scholar 

  48. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Shi, R., Long, R., Fang, W.-H. & Prezhdo, O. V. Rapid interlayer charge separation and extended carrier lifetimes due to spontaneous symmetry breaking in organic and mixed organic–inorganic Dion–Jacobson perovskites. J. Am. Chem. Soc. 145, 5297–5309 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Vanishri, S. et al. Crystal growth and characterization of two-leg spin ladder compounds: Sr14Cu24O41 and Sr2Ca12Cu24O41. J. Cryst. Growth 311, 3830–3834 (2009).

    Article  CAS  Google Scholar 

  53. Gao, F. Y., Zhang, Z., Liu, Z.-J. & Nelson, K. A. High-speed two-dimensional terahertz spectroscopy with echelon-based shot-to-shot balanced detection. Opt. Lett. 47, 3479–3482 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Hunt, C. R. Manipulating Superconductivity in Cuprates with Selective Ultrafast Excitation. PhD thesis, Univ. of Illinois at Urbana-Champaign (2015).

  56. SwissFEL Furka (2025); https://www.psi.ch/en/swissfel/furka

  57. Abela, R. et al. The SwissFEL soft X-ray free-electron laser beamline: Athos. J. Synchrotron Rad. 26, 1073–1084 (2019).

    Article  CAS  Google Scholar 

  58. Padma, H. et al. Beyond-Hubbard pairing in a cuprate ladder. Phys. Rev. X 15, 021049 (2025).

    CAS  Google Scholar 

  59. Haegeman, J. et al. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107, 070601 (2011).

    Article  PubMed  Google Scholar 

  60. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).

    PubMed  Google Scholar 

  61. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 29, 465901 (2017).

    CAS  PubMed  Google Scholar 

  62. Taillefumier, M., Cabaret, D., Flank, A.-M. & Mauri, F. X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K edge in diamond and α-quartz. Phys. Rev. B 66, 195107 (2002).

    Article  Google Scholar 

  63. Gougoussis, C., Calandra, M., Seitsonen, A. P. & Mauri, F. First-principles calculations of X-ray absorption in a scheme based on ultrasoft pseudopotentials: from α-quartz to high-TC compounds. Phys. Rev. B 80, 075102 (2009).

    Article  Google Scholar 

  64. Gougoussis, C. et al. Intrinsic charge transfer gap in NiO from Ni K-edge X-ray absorption spectroscopy. Phys. Rev. B 79, 045118 (2009).

    Article  Google Scholar 

  65. Bunau, O. & Calandra, M. Projector augmented wave calculation of X-ray absorption spectra at the L2,3 edges. Phys. Rev. B 87, 205105 (2013).

    Article  Google Scholar 

  66. Pickard, C. J. & Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001).

    Article  Google Scholar 

  67. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Ilakovac, V. et al. Hole depletion of ladders in Sr14Cu24O41 induced by correlation effects. Phys. Rev. B 85, 075108 (2012).

    Article  Google Scholar 

  69. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bernhard, A. Cavalleri, S. Chattopadhyay, R. Comin, E. Demler, M. Eckstein, T. Giamarchi, V. Ilakovac and S. Johnston for insightful discussions. Experimental part of this work was primarily supported by the US Department of Energy, Office of Basic Energy Sciences, Early Career Award Program, under award no. DE-SC0022883. Theoretical part of the work (L.X., Z.S. and Yao Wang) was supported by the Air Force Office of Scientific Research Young Investigator Program under grant no. FA9550-23-1-0153. Work performed at Brookhaven National Laboratory was supported by the US Department of Energy, Division of Materials Science, under contract no. DE-SC0012704. B. Lee and H.J. were supported by the National Research Foundation of Korea (MSIT), grant nos. 2022M3H4A1A04074153 and 2020M3H4A2084417. M.C. acknowledges support from the European Union (ERC, DELIGHT, 101052708). We acknowledge the Paul Scherrer Institut, Villigen, Switzerland, for the provision of beamtime at the Furka beamline of the SwissFEL. The work at PAL-XFEL was performed at the RSXS endstation (proposal no. 2023-1st-SSS-002), funded by the Korean government (MSIT). The single-crystal growth work was performed at the Pennsylvania State University Two-Dimensional Crystal Consortium—Materials Innovation Platform (2DCC-MIP), which is supported by NSF Cooperative Agreement no. DMR-2039351. J.D.E. and M.C. are supported by The Royal Society, grant no. IES/R3/223185. We acknowledge computational resources from ARCHER2 UK National Computing Service, which was granted via HPC-CONEXS, the UK High-End Computing Consortium (EPSRC grant no. EP/X035514/1). The simulation used resources of the Frontera computing system at the Texas Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

H.P. and M.M. conceived the project. M.M. supervised the project. H.P. and F.G. conducted the time-resolved time-domain THz spectroscopy measurements. C.C.H. performed the equilibrium optical spectroscopy measurements. H.P., S.F.R.T., M.P.M.D., M.M., E.S., H.U., B. Liu, E.P., A.R. and E.R. conducted the Cu L3-edge trXAS and trRIXS measurements. H.P., S.F.R.T., B. Lee, H.C., S.-Y.P. and H.J. conducted the O K-edge trXAS and trXRD measurements. Yu Wang, S.H.L. and Z.M. synthesized the samples. H.P., W.H. and S.F.R.T. prepared and precharacterized the samples. Yao Wang developed the theoretical model for the light-activated hopping mechanism. Z.S. and H.W. performed the DMRG calculations and L.X. performed the ab initio simulations under the supervision of Yao Wang. J.D.E. and M.C. performed the DFT calculations. H.P. analysed the data. H.P., Yao Wang and M.M. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Hari Padma, Yao Wang or Matteo Mitrano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Dragan Mihailovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Sections 1–7, Figs. 1–22 and Tables 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padma, H., Glerean, F., TenHuisen, S.F.R. et al. Symmetry-protected electronic metastability in an optically driven cuprate ladder. Nat. Mater. 24, 1584–1591 (2025). https://doi.org/10.1038/s41563-025-02254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02254-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing