Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flatland wakes based on leaky hyperbolic polaritons

Abstract

Hyperbolic polaritons facilitate nanoscale light manipulation, but strong field confinement limits their transmission across interfaces. Conversely, leaky waves can convert radiation from confined sources towards the far field. Here we combine hyperbolic polaritons and leaky wave radiation to demonstrate flatland leaky polaritonic wakes. We employ a mixed-dimensional van der Waals heterostructure consisting of a nanoscale waveguide strip on a van der Waals film. The waveguide mode, confined inside the hyperbolic light cone of the background film, enables efficient directional in-plane emission of fast phonon polaritons. The constructive interference of these leaky polaritons generates highly directional polaritonic wakes. Their spatial symmetry can be tailored through the orientation of the heterostructure with respect to the hyperbolic film dispersion. Leveraging van der Waals stacking, we also demonstrate effective acceleration and deceleration of polaritonic wakes by locally tailoring the leaky nano-waveguide dispersion through gradient thickness design. Our findings demonstrate that polaritonic wakes hold promise for integrated nanophotonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device geometry.
Fig. 2: Nanoimaging of anisotropic and isotropic PWs.
Fig. 3: Steering PWs by crystal orientation of the heterostructure.
Fig. 4: Accelerating and decelerating PWs in non-uniform waveguides.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Source data are provided with this paper.

References

  1. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).

    Article  Google Scholar 

  3. Guo, X. et al. Polaritons in van der Waals heterostructures. Adv. Mater. 35, 2201856 (2022).

    Article  Google Scholar 

  4. Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article  PubMed  Google Scholar 

  9. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni, X. et al. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat. Commun. 14, 2845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teng, H. et al. Steering and cloaking of hyperbolic polaritons at deep-subwavelength scales. Nat. Commun. 15, 4463 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Sternbach, A. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, T., Zheng, C., Chen, Z. N. & Qiu, C. W. Negative reflection and negative refraction in biaxial van der Waals materials. Nano Lett. 22, 5607–5614 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moccia, M., Castaldi, G., Alù, A. & Galdi, V. Leaky waves in flatland. Adv. Opt. Mater. 12, 2203121 (2024).

    Article  CAS  Google Scholar 

  23. Monticone, F. & Alu, A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE 103, 793–821 (2015).

    Article  Google Scholar 

  24. Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

    Article  CAS  Google Scholar 

  25. Matsumoto, H., Watanabe, I., Kasamatsu, A. & Monnai, Y. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron. 3, 122–129 (2020).

    Article  Google Scholar 

  26. Huang, H. et al. Leaky-wave metasurfaces for integrated photonics. Nat. Nanotechnol. 18, 580–588 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Kong, G. S., Ma, H. F., Cai, B. G. & Cui, T. J. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci. Rep. 6, 29600 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alù, A., Bilotti, F., Engheta, N. & Vegni, L. Subwavelength planar leaky-wave components with metamaterial bilayers. IEEE Trans. Antennas Propag. 55, 882–891 (2007).

    Article  Google Scholar 

  29. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

    Article  Google Scholar 

  34. Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).

    Article  CAS  Google Scholar 

  35. Xue, S., Zeng, Y., Bao, Q., Zhu, S. & Chen, H. Tunable Cherenkov radiation based on a van der Waals semiconductor α-MoO3 and graphene hybrid. Opt. Lett. 47, 2458–2461 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, H. et al. Surface Dyakonov–Cherenkov radiation. eLight 2, 2 (2022).

    Article  Google Scholar 

  37. Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maciel-Escudero, C., Konečná, A., Hillenbrand, R. & Aizpurua, J. Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: hexagonal boron nitride. Phys. Rev. B 102, 115431 (2020).

    Article  CAS  Google Scholar 

  39. Moccia, M., Castaldi, G., Alù, A. & Galdi, V. Exploring interface effects in flatland optics. In 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) X-114–X-116 (IEEE, 2023).

  40. Sun, Y. et al. Direct measurement of polariton–polariton interaction strength. Nat. Phys. 13, 870–875 (2017).

    Article  CAS  Google Scholar 

  41. Zhang, Y. et al. Tunable Cherenkov radiation of phonon polaritons in silver nanowire/hexagonal boron nitride heterostructures. Nano Lett. 20, 2770–2777 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Guo, X. et al. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun. 14, 2532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qu, Y. et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3. Adv. Mater. 34, 2105590 (2022).

    Article  CAS  Google Scholar 

  47. Correas-Serrano, D. & Gomez-Diaz, J. S. Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces. Phys. Rev. B 100, 081410 (2019).

    Article  CAS  Google Scholar 

  48. Rus, J., Bossart, A., Apffel, B., Malléjac, M. & Fleury, R. Experimental observation of parabolic wakes in thin plates. Phys. Rev. Res. 6, L032027 (2024).

    Article  CAS  Google Scholar 

  49. Chaves, A. J., Peres, N. M. R., Smirnov, G. & Mortensen, N. A. Hydrodynamic model approach to the formation of plasmonic wakes in graphene. Phys. Rev. B 96, 195438 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge X. Xi and X. Wang (State Key Laboratory of New Ceramics & Fine Processing, Tsinghua University) for scanning near-field optical microscopy measurements and valuable discussions, and are grateful to X. Li (Institutional Center for Shared Technologies and Facilities of Institute of Process Engineering, Chinese Academy of Sciences) for assistance with structural fabrication and characterization. Q.D., H.H. and their team were supported by the National Key Research and Development Program of China (grant no. 2021YFA1201500 to Q.D.), the National Natural Science Foundation of China (grant nos. 52322209, 52172139 and 52350314 to H.H.; grant no. 51925203 to Q.D.), Beijing Nova Program (grant nos. 2022012 and 20240484600 to H.H.) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant no. 2022037 to H.H.). N.C. was supported by the Postdoctoral Fellowship Program and China Postdoctoral Science Foundation (grant nos. BX20250181 and 2024M760685). A.A. was supported by the Office of Naval Research (grant no. N00014-2212448), the Air Force Office of Scientific Research and the Simons Foundation.

Author information

Authors and Affiliations

Contributions

Q.D. and H.H. conceived the idea. Q.D. and A.A. supervised the project. N.C. and H.H. led the experiments, prepared the samples and performed the near-field measurements. H.T. and A.A. developed the theory and performed the simulation. N.C., H.T. and H.H. analysed the data, and all authors discussed the results. M.L., C.J., Z.X., H.Z. and J.G. provided experimental and simulation assistance. H.H., N.C., H.T. and Q.D. cowrote the paper, with input and comments from all other authors.

Corresponding authors

Correspondence to Hai Hu, Andrea Alù or Qing Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Notes 1–5.

Source data

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Teng, H., Hu, H. et al. Flatland wakes based on leaky hyperbolic polaritons. Nat. Mater. 24, 1569–1575 (2025). https://doi.org/10.1038/s41563-025-02280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02280-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing