Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-scale frustrated Josephson coupling and multicondensate visualization in FeSe

Abstract

In a Josephson junction involving multiband superconductors, competition between interband and interjunction Josephson couplings gives rise to frustration and spatial disjunction of superfluid densities among superconducting condensates1,2,3,4,5,6,7. Such frustrated coupling manifests as the quantum interference of Josephson currents from different tunnelling channels and becomes tunable if channel transparency can be varied5,6,7,8. To explore these unconventional effects in the prototypical s±-wave superconductor FeSe (ref. 9), we use atomic-resolution scanned Josephson tunnelling microscopy10,11,12,13 for condensate-resolved imaging and junction tuning—capabilities unattainable in macroscopic Josephson devices with fixed characteristics. We quantitatively demonstrate frustrated Josephson tunnelling by examining two tunnelling inequalities. The relative transparency of two parallel tunnelling pathways is found tunable, revealing a tendency towards a 0–π transition with decreasing scanned Josephson tunnelling microscopy junction resistance. The simultaneous visualization of both superconducting condensates reveals anticorrelated superfluid modulations, highlighting the role of interband scattering. Our study establishes scanned Josephson tunnelling microscopy as a powerful tool enabling new research frontiers of multicondensate superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Frustrated Josephson tunnelling in multiband superconductors and FeSe.
Fig. 2: Visualizing Josephson tunnelling interference between Nb and FeSe.
Fig. 3: Tunable and condensate-resolved Josephson tunnelling.
Fig. 4: Anticorrelated intercondensate superfluid density modulation.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the Letter and its Supplementary Information. Source data are provided with this paper.

References

  1. Ota, Y., Machida, M., Koyama, T. & Matsumoto, H. Theory of heterotic superconductor-insulator-superconductor Josephson junctions between single- and multiple-gap superconductors. Phys. Rev. Lett. 102, 237003 (2009).

    Article  PubMed  Google Scholar 

  2. Koshelev, A. E. Phase diagram of Josephson junction between s and s± superconductors in the dirty limit. Phys. Rev. B 86, 214502 (2012).

    Article  Google Scholar 

  3. Ota, Y. et al. Ambegaokar-Baratoff relations for Josephson critical current in heterojunctions with multigap superconductors. Phys. Rev. B 81, 214511 (2010).

    Article  Google Scholar 

  4. Agterberg, D. F., Demler, E. & Janko, B. Josephson effects between multigap and single-gap superconductors. Phys. Rev. B 66, 214507 (2002).

    Article  Google Scholar 

  5. Wang, D., Lu, H.-Y. & Wang, Q.-H. The finite temperature effect on Josephson junction between an s-wave superconductor and an s±-wave superconductor. Chinese Phys. Lett. 30, 077404 (2013).

    Article  Google Scholar 

  6. Lin, S.-Z. Josephson effect between a two-band superconductor with s++ or s± pairing symmetry and a conventional s-wave superconductor. Phys. Rev. B 86, 014510 (2012).

    Article  Google Scholar 

  7. Linder, J., Sperstad, I. B. & Sudbø, A. 0-π phase shifts in Josephson junctions as a signature for the s±-wave pairing state. Phys. Rev. B 80, 020503 (2009).

    Article  Google Scholar 

  8. Stanev, V. G. & Koshelev, A. E. Anomalous proximity effects at the interface of s- and s±-superconductors. Phys. Rev. B 86, 174515 (2012).

    Article  Google Scholar 

  9. Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Randeria, M. T., Feldman, B. E., Drozdov, I. K. & Yazdani, A. Scanning Josephson spectroscopy on the atomic scale. Phys. Rev. B 93, 161115 (2016).

    Article  Google Scholar 

  11. Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Cho, D., Bastiaans, K. M., Chatzopoulos, D., Gu, G. D. & Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).

    Article  CAS  Google Scholar 

  14. Stanev, V. & Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 81, 134522 (2010).

    Article  Google Scholar 

  15. Khodas, M. & Chubukov, A. V. Interpocket pairing and gap symmetry in Fe-based superconductors with only electron pockets. Phys. Rev. Lett. 108, 247003 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Kang, J., Chubukov, A. V. & Fernandes, R. M. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys. Rev. B 98, 064508 (2018).

    Article  CAS  Google Scholar 

  17. Moshchalkov, V. et al. Type-1.5 superconductivity. Phys. Rev. Lett. 102, 117001 (2009).

    Article  PubMed  Google Scholar 

  18. Babaev, E., Carlström, J. & Speight, M. Type-1.5 superconducting state from an intrinsic proximity effect in two-band superconductors. Phys. Rev. Lett. 105, 067003 (2010).

    Article  PubMed  Google Scholar 

  19. Vakaryuk, V., Stanev, V., Lee, W.-C. & Levchenko, A. Topological defect-phase soliton and the pairing symmetry of a two-band superconductor: role of the proximity effect. Phys. Rev. Lett. 109, 227003 (2012).

    Article  PubMed  Google Scholar 

  20. Iguchi, Y. et al. Superconducting vortices carrying a temperature-dependent fraction of the flux quantum. Science 380, 1244–1247 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, Y. et al. Direct observation of quantum vortex fractionalization in multiband superconductors. Preprint at https://arxiv.org/abs/2407.18610 (2024).

  22. Chen, W.-Q., Ma, F., Lu, Z.-Y. & Zhang, F.-C. π junction to probe antiphase s-wave pairing in iron pnictide superconductors. Phys. Rev. Lett. 103, 207001 (2009).

    Article  PubMed  Google Scholar 

  23. Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Atomic-scale visualization of electron fluid flow. Nat. Mater. 20, 1480–1484 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Deng, H. et al. Chiral kagome superconductivity modulations with residual Fermi arcs. Nature 632, 775–781 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Ivanchenko, Y. M. & Zil’Berman, L. A. The Josephson effect in small tunnel contacts. Sov. Phys. JETP 28, 1272–1276 (1969).

    Google Scholar 

  27. Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kimura, H., Barber, R. P. Jr., Ono, S., Ando, Y. & Dynes, R. C. Josephson scanning tunneling microscopy: a local and direct probe of the superconducting order parameter. Phys. Rev. B 80, 144506 (2009).

    Article  Google Scholar 

  29. Uhl, M. et al. Multiband Josephson effect in an atomic scale Pb tunnel junction. Phys. Rev. Res. 6, 043233 (2024).

    Article  CAS  Google Scholar 

  30. Carlstrom, J., Babaev, E. & Speight, M. Type-1.5 superconductivity in multiband systems: effects of interband couplings. Phys. Rev. B 83, 174509 (2011).

    Article  Google Scholar 

  31. Grigorishin, K. V. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors. Phys. Lett. A 380, 1781–1787 (2016).

    Article  CAS  Google Scholar 

  32. Dong, X., Zhou, F. & Zhao, Z. Electronic and superconducting properties of some FeSe-based single crystals and films grown hydrothermally. Front. Phys. 8, 586182 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Morr, B. Janko, M. Eskildsen and Y.-T. Hsu for valuable discussions. This work is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0025021 to X.L. for advanced SJTM measurements of unconventional superconductivity); the National Science Foundation, Division of Materials Research (DMR-2236528 to S.R.); startup funding from the University of Notre Dame and the Stavropoulos Center for Complex Quantum Matter (to X.L. for initially setting up the research laboratory); and the Notre Dame Materials Science and Engineering Fellowship (to N.S. and M.T.).

Author information

Authors and Affiliations

Authors

Contributions

X.L. conceived of the project. N.S. and M.T. performed the measurements. S.R. provided the FeSe crystals. N.S., M.T. and J.M. performed the data analysis. X.L. wrote the paper with input from all authors. All authors contributed to data interpretation.

Corresponding author

Correspondence to Xiaolong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jia-Xin Yin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–12 and references.

Source data

Source Data Fig. 1

Data for plots and SJTM images in Fig. 1.

Source Data Fig. 2

Data for plots and SJTM images in Fig. 2.

Source Data Fig. 3

Data for plots and SJTM images in Fig. 3.

Source Data Fig. 4

Data for plots and SJTM images in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Toole, M., McKenzie, J. et al. Atomic-scale frustrated Josephson coupling and multicondensate visualization in FeSe. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02290-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing