Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular engineering of two-dimensional polyamide interphase layers for anode-free lithium metal batteries

Abstract

Anode-free lithium (Li) metal batteries are promising candidates for high-performance energy storage applications. Nonetheless, their translation into practical applications has been hindered by the slow kinetics and reversibility of Li plating and stripping on copper foils. Here we report a two-dimensional polyamide (2DPA)/lithiated Nafion (LN) interphase layer for anode-free Li metal batteries. Through molecular engineering, we construct a 2DPA layer with a large conjugated structure and Li-ion adsorption groups that show efficient adsorption, distribution and nucleation of Li ions. 2DPA molecules assembled into two-dimensional sheets are further incorporated with LN to create an ultrathin interphase layer with high-rate, high-capacity Li plating/stripping. These 2DPA/LN layers have higher rate capabilities and maximal energy and power densities compared with alternative polymer interphase layers, enabling the fabrication of an anode-free pouch cell with high performance. Overall, our interphase engineering approach is a promising tool to push the translation of anode-free Li metal batteries based on two-dimensional polymer interphase layers into practical devices, and enable the fabrication of energy storage technologies with high energy and power densities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 2DPA/LN interphase layer for anode-free Li metal batteries.
Fig. 2: Large-area 2DPA/LN-Cu foil with high uniformity.
Fig. 3: Adsorption–conjugation synergistic effect for IHP regulation.
Fig. 4: Electrochemical properties and Li deposition morphology of Li||2DPA/LN-Cu cells.
Fig. 5: SEI chemistry derived from the 2DPA/LN interphase layer.
Fig. 6: Electrochemical performance of anode-free batteries based on 2DPA/LN-Cu.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Armand, M. & Tarascon, J. Building better batteries. Nature 451, 652–657 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article  PubMed  CAS  Google Scholar 

  3. Nanda, S., Gupta, A. & Manthiram, A. Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Adv. Energy Mater. 11, 2000804 (2021).

    Article  CAS  Google Scholar 

  4. Hobold, G. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  CAS  Google Scholar 

  5. Dong, L. et al. Toward practical anode-free lithium pouch batteries. Energy Environ. Sci. 16, 5605–5632 (2023).

    Article  CAS  Google Scholar 

  6. Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. Anode-free lithium metal batteries based on an ultrathin and respirable interphase layer. Angew. Chem. Int. Ed. 62, e202304978 (2023).

    Article  CAS  Google Scholar 

  8. Assegie, A., Cheng, J., Kuo, L., Su, W. & Hwang, B. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10, 6125–6138 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. Hu, A. et al. N, F-enriched inorganic/organic composite interphases to stabilize lithium metal anodes for long-life anode-free cells. J. Colloid Interface Sci. 648, 448–456 (2023).

    Article  PubMed  CAS  Google Scholar 

  10. Liu, H. et al. A scalable 3D lithium metal anode. Energy Storage Mater. 16, 505–511 (2019).

    Article  Google Scholar 

  11. Lu, R. et al. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy 95, 107009 (2022).

    Article  CAS  Google Scholar 

  12. Tamwattana, O. et al. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6, 4416–4425 (2021).

    Article  CAS  Google Scholar 

  13. Pyo, S. et al. Lithiophilic wetting agent inducing interfacial fluorination for long‐lifespan anode‐free lithium metal batteries. Adv. Energy Mater. 13, 2203573 (2023).

    Article  CAS  Google Scholar 

  14. Sun, Z. et al. Ultra-thin and ultra-light self-lubricating layer with accelerated dynamics for anode-free lithium metal batteries. Energy Storage Mater. 58, 110–122 (2023).

    Article  Google Scholar 

  15. Ouyang, Z. et al. Programmable DNA interphase layers for high-performance anode-free lithium metal batteries. Adv. Mater. 36, 2401114 (2024).

    Article  CAS  Google Scholar 

  16. Diaz-Lopez, M. et al. Li2O:Li–Mn–O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries. Adv. Energy Mater. 10, 1902788 (2020).

    Article  CAS  Google Scholar 

  17. Zhu, Y. et al. Lattice engineering on Li2CO3-based sacrificial cathode prelithiation agent for improving the energy density of Li-ion battery full-cell. Adv. Mater. 20, 2312159 (2023).

    Google Scholar 

  18. Genovese, M. et al. Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J. Electrochem. Soc. 166, A3342 (2019).

    Article  CAS  Google Scholar 

  19. Liu, P. et al. Ultra-long-life and ultrathin quasi-solid electrolytes fabricated by solvent-free technology for safe lithium metal batteries. Energy Storage Mater. 58, 132–141 (2023).

    Article  Google Scholar 

  20. Ren, Y. & Xu, Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem. Soc. Rev. 53, 1823–1869 (2024).

    Article  PubMed  CAS  Google Scholar 

  21. Zeng, Y. et al. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602, 91–95 (2022).

    Article  PubMed  CAS  Google Scholar 

  22. Guan, P. et al. High-temperature low-humidity proton exchange membrane with ‘stream-reservoir’ ionic channels for high-power-density fuel cells. Sci. Adv. 9, eadh1386 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li, S. et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Wang, X. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).

    Article  CAS  Google Scholar 

  25. Kim, S. et al. Horizontal lithium electrodeposition on atomically polarized monolayer hexagonal boron nitride. ACS Nano 18, 24128–24138 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Valadbeigi, Y. & Gal, F. Directionality of cation/molecule bonding in Lewis bases containing the carbonyl group. J. Phys. Chem. A 121, 6810–6822 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Lu, T. & Chen, F. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J. Phys. Chem. A 117, 3100–3108 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Pei, A. et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Ham, Y. et al. 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894–5902 (2021).

    Article  CAS  Google Scholar 

  30. Yang, Z. et al. Intermolecular hydrogen bonding networks stabilized organic supramolecular cathode for ultra‐high capacity and ultra‐long cycle life rechargeable aluminum batteries. Angew. Chem. Int. Ed. 63, e202403424 (2024).

    Article  CAS  Google Scholar 

  31. Li, S. et al. Design and synthesis of a π‐conjugated N‐heteroaromatic material for aqueous zinc–organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 35, 2207115 (2022).

    Article  Google Scholar 

  32. Wang, C. et al. A pyrazine‐pyridinamine covalent organic framework as a low potential anode for highly durable aqueous calcium‐ion batteries. Adv. Energy Mater. 14, 2302495 (2024).

    Article  CAS  Google Scholar 

  33. Chen, W. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10, 4973 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu, T. et al. Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc‐ion batteries. Adv. Funct. Mater. 34, 2315716 (2024).

    Article  CAS  Google Scholar 

  35. Ge, W. et al. Dynamically formed surfactant assembly at the electrified electrode–electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 144, 6613–6622 (2022).

    Article  PubMed  CAS  Google Scholar 

  36. Zheng, J. et al. Leveraging polymer architecture design with acylamino functionalization for electrolytes to enable highly durable lithium metal batteries. Energy Environ. Sci. 17, 6739–6754 (2024).

    Article  CAS  Google Scholar 

  37. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  CAS  Google Scholar 

  38. Xu, Y. et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3, 1685–1700 (2020).

    Article  Google Scholar 

  39. Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).

    CAS  Google Scholar 

  40. Li, N. et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv. Mater. 32, 1907079 (2020).

    Article  CAS  Google Scholar 

  41. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  CAS  Google Scholar 

  42. Luo, J., Fang, C. & Wu, L. High polarity poly(vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2018).

    Article  Google Scholar 

  43. Chen, W. et al. Laser-induced silicon oxide for anode-free lithium metal batteries. Adv. Mater. 32, 2002850 (2020).

    Article  CAS  Google Scholar 

  44. Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg−1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).

    Article  CAS  Google Scholar 

  45. Ye, L. et al. Lithium‐metal anodes working at 60 mA cm−2 and 60 mAh cm−2 through nanoscale lithium‐ion adsorbing. Angew. Chem. Int. Ed. 133, 17559–17565 (2021).

    Article  Google Scholar 

  46. Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).

    Article  Google Scholar 

  47. Jung, J. et al. Insights on the work function of the current collector surface in anode-free lithium metal batteries. J. Mater. Chem. A 10, 20984–20992 (2022).

    Article  CAS  Google Scholar 

  48. Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).

    Article  CAS  Google Scholar 

  49. Hong, L. et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16, 6906–6915 (2022).

    Article  PubMed  CAS  Google Scholar 

  50. Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  CAS  Google Scholar 

  51. Louli, A. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  CAS  Google Scholar 

  52. Zhang, F. et al. Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition. Nat. Commun. 15, 3393 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wu, X., Xiong, X., Yuan, B. & Hu, R. Understanding the phenomenon of capacity increasing along cycles: in the case of an ultralong-life and high-rate SnSe-Mo-C anode for lithium storage. J. Energy Chem. 72, 133–142 (2022).

    Article  CAS  Google Scholar 

  54. Wu, N. et al. Suppressing interfacial side reactions of anode‐free lithium batteries by an organic salt monolayer. Small 19, 2303952 (2023).

    Article  CAS  Google Scholar 

  55. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 15 (2010).

    Article  Google Scholar 

  56. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  57. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. Xantheas, S. On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J. Chem. Phys. 104, 8821–8824 (1996).

    Article  CAS  Google Scholar 

  59. Yurash, B. et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 18, 1327–1334 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

H.S. acknowledges support from the National Natural Science Foundation of China (22209108) and Fundamental Research Funds for the Central Universities (24×010301678). H.P. acknowledges support from the Ministry of Science and Technology of the People’s Republic of China (2022YFA1203001 and 2022YFA1203002) and National Natural Science Foundation of China (T2321003 and 22335003). Y.W. acknowledges support from the Natural Science Foundation of Shanghai (24ZR1437400). We also acknowledge the BL02U2 station at the Shanghai Synchrotron Radiation Facility for assistance on grazing-incidence wide-angle X-ray scattering measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.S. conceived and designed this research project. S.W., Y.W. and Z.O. performed the material synthesis, battery preparation and performance characterization. B.Y. and X. Zhang performed the scanning electronic microscopy and FT-IR measurements. Q.X., Q.C. and S.G. performed the XPS and AFM measurements. S.T. performed the high-resolution cryo-TEM measurements. S.W., Y.W., X. Zhao, P.C., H.P. and H.S. prepared the paper. All authors participated in the data analysis and discussion.

Corresponding authors

Correspondence to Huisheng Peng or Hao Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Bing Joe Hwang and Il-Doo Kim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Tables 1–7 and References.

Reporting Summary

Supplementary_Video 1

820-mAh 2DPA/LN-Cu||LiFePO4 anode-free pouch cell could power a toy car with a rated power of 8.8 W.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y., Ouyang, Z. et al. Molecular engineering of two-dimensional polyamide interphase layers for anode-free lithium metal batteries. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02339-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing