Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilized perovskite phases enabling efficient perovskite/perovskite/silicon triple-junction solar cells

Abstract

Perovskite/perovskite/silicon triple-junction solar cells offer notable potential for high power output at low cost, yet their development is hindered by the phase instability of perovskites, which limits both device reproducibility and performance. The ~1.50-eV formamidinium lead triiodide (FAPbI3)-based middle layer degrades during subsequent fabrication steps, and the ~2.0-eV bromide-rich top layer suffers from light-induced phase segregation. Here we address these challenges by introducing ammonium propionic acid to enhance the phase stability in both perovskite layers. This strategy raises the phase transition energy barrier and suppresses vacancy defect formation through additional bonding with lattice cations. These improvements mitigate phase instabilities and enhance the power conversion efficiency of devices based on the modified perovskite films. As a result, perovskite/perovskite/silicon triple-junction solar cells achieve a power conversion efficiency of 28.7% on a 1-cm2 aperture area, with substantially improved reproducibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase stability of Mid and Top perovskites.
Fig. 2: Bulk and interface properties of perovskite films.
Fig. 3: Performance of 1-J perovskite solar cells.
Fig. 4: Performance of perovskite/perovskite/Si 3-J solar cells.

Similar content being viewed by others

Data availability

All data are available in the Article or Supplementary Information.

References

  1. Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    Article  PubMed  Google Scholar 

  2. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    Article  CAS  Google Scholar 

  3. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  CAS  Google Scholar 

  4. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Best research-cell efficiencies. NREL https://www.nrel.gov/pv/cell-efficiency.html (2023).

  7. Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).

    Article  Google Scholar 

  8. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  9. Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021).

    Article  CAS  Google Scholar 

  10. Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Futscher, M. H. & Ehrler, B. Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016).

    Article  CAS  Google Scholar 

  16. Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  Google Scholar 

  17. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J. & Park, N. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 10, 1903249 (2020).

    Article  CAS  Google Scholar 

  19. Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).

    Article  CAS  Google Scholar 

  20. Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, X. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. He, J. et al. Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Sol. Energy 188, 312–317 (2019).

    Article  CAS  Google Scholar 

  23. Sheikh, A. D. et al. Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl. Mater. Interfaces 9, 35018–35029 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  CAS  Google Scholar 

  25. Johnson, S. A. et al. Improving the barrier properties of tin oxide in metal halide perovskite solar cells using ozone to enhance nucleation. Joule 7, 2873–2893 (2023).

    Article  CAS  Google Scholar 

  26. Xu, F. et al. Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8, 224–240 (2024).

    Article  CAS  Google Scholar 

  27. Hultqvist, A. et al. SnOx atomic layer deposition on bare perovskite—an investigation of initial growth dynamics, interface chemistry, and solar cell performance. ACS Appl. Energy Mater. 4, 510–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).

    Article  CAS  Google Scholar 

  29. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  CAS  Google Scholar 

  30. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  31. Knight, A. J. et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett. 6, 799–808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang, W., Liu, S. F. & Tress, W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090–2113 (2021).

    Article  CAS  Google Scholar 

  33. Ono, L. K., Qi, Y. & Liu, S. F. Progress toward stable lead halide perovskite solar cells. Joule 2, 1961–1990 (2018).

    Article  CAS  Google Scholar 

  34. Yao, D. et al. 2D–3D mixed organic–inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl. Mater. Interfaces 11, 29753–29764 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Lin, Y. et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article  CAS  Google Scholar 

  37. Fei, C. et al. Self-assembled propylammonium cations at grain boundaries and the film surface to improve the efficiency and stability of perovskite solar cells. J. Mater. Chem. A 7, 23739–23746 (2019).

    Article  CAS  Google Scholar 

  38. Zhang, Y. et al. Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells. Adv. Energy Mater. 11, 2102538 (2021).

    Article  CAS  Google Scholar 

  39. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  CAS  Google Scholar 

  40. Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).

    Article  CAS  Google Scholar 

  41. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Park, B. et al. Publisher correction: stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 848 (2021).

    Article  Google Scholar 

  43. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the KAUST Solar Center and the support of its staff, and J. Xu is involved in the DFT discussion. Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant number 1015902023, supporting I.Y. and C.D. The KAUST team was supported by the KAUST Office of Sponsored Research (OSR) under award numbers URF/1/4350-01, URF/1/4669-01 and URF/1/5035-01.

Author information

Authors and Affiliations

Authors

Contributions

F.X. conceived the idea. F.X. and E.A. wrote the paper. F.X. developed all the 1-J and tandem solar cells, performed all the characterizations if not claimed specifically, and analysed all the data and performed all the calculations with the other co-authors. F.X. and J.L. performed the JV and EQE measurements of 3-J solar cells and the transient photocurrent decay. I.Y. and C.D. performed the DFT calculations. E.U. conducted the QFLS measurement. L.X. performed the S–Q limit simulation. B.V. performed the STEM analysis. X.Z. conducted the XRD characterization. T.A. performed the SPICE simulations. A.R., T.A. and A. Pininti contributed to the Si bottom-cell fabrication. S.D.W. supervised the project and secured funding for this research. A. Prasetio. and A.S. contributed to the schematics and data analysis. M.M. contributed to the encapsulation of devices and stability measurement. All authors participated in the paper preparation.

Corresponding authors

Correspondence to Fuzong Xu or Stefaan De Wolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Yi Hou, Christian Wolff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–29 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Aydin, E., Yavuz, I. et al. Stabilized perovskite phases enabling efficient perovskite/perovskite/silicon triple-junction solar cells. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02367-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing