Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bulk-heterojunction doping in lead halide perovskites for low-resistance metal contacts

Abstract

Efficient carrier injection at metal–semiconductor interfaces is essential for probing intrinsic electronic properties and enabling high-performance devices. Thinning the Schottky barrier via contact doping is a cornerstone strategy in semiconductor technology for minimizing contact resistance (Rc). However, carrier doping in halide perovskites has remained elusive, and selective contact doping has not been achieved, resulting in excessive Rc that far exceeds the intrinsic material resistance. Here we report an effective contact-doping strategy by transferring Ag/Au electrodes onto single-crystal CsPbBr3 thin films using a low-energy van der Waals integration process. Moderate annealing (80–180 °C) during transfer enables silver diffusion into CsPbBr3, followed by its transformation into Ag2O clusters upon ultraviolet treatment, forming an Ag2O/CsPbBr3 bulk heterojunction. The Ag2O clusters embedded in CsPbBr3 act as interfacial electron acceptors, inducing a local hole density of 5 × 1017 cm−3 in the contact region. This markedly shrinks the Schottky barrier and enhances carrier injection, yielding a substantially reduced Rc of 26–70 Ω cm and a notably high two-terminal sheet conductance exceeding 225 µS at 190 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ doping process and charge-transfer mechanism.
Fig. 2: Characterizations of the p-doping effect by Ag2O in perovskite.
Fig. 3: Electrical performance of the LHP devices with doped contacts.
Fig. 4: Analysis of the local carrier density, injection mechanism and contact resistance at the doped contacts.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary information. Source data for Figs. 1d, 2b–d,f, 3a–e and 4a–f are available from Figshare via https://doi.org/10.6084/m9.figshare.30957728 (ref. 55). Source data for Fig. 3f are listed in Supplementary Table 1. Source data are provided with this paper.

References

  1. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Zou, C. et al. Electrically driven lasing from a dual-cavity perovskite device. Nature 645, 369–374 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, S. W. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  PubMed  Google Scholar 

  4. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Li, M. M. et al. Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630, 631–635 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, S. et al. Efficient blue electroluminescence from reduced-dimensional perovskites. Nat. Photon. 18, 425–431 (2024).

    Article  CAS  Google Scholar 

  8. Qian, Q. et al. Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. Nat. Nanotechnol. 18, 357–364 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Senanayak, S. P. et al. Charge transport in mixed metal halide perovskite semiconductors. Nat. Mater. 22, 216–224 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, Y. et al. Metallic surface doping of metal halide perovskites. Nat. Commun. 12, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Younis, A. et al. Enhancing resistive switching performance and ambient stability of hybrid perovskite single crystals via embedding colloidal quantum dots. Adv. Funct. Mater. 30, 2002948 (2020).

    Article  CAS  Google Scholar 

  12. Zhou, S. et al. Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett 4, 534–541 (2019).

    Article  CAS  Google Scholar 

  13. Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, J. et al. Investigation of electrode electrochemical reactions in CH3NH3PbBr3 perovskite single-crystal field-effect transistors. Adv. Mater. 31, 1902618 (2019).

    Article  Google Scholar 

  15. Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A. & Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jana, S., Carlos, E., Panigrahi, S., Martins, R. & Fortunato, E. Toward stable solution-processed high-mobility p-type thin film transistors based on halide perovskites. ACS Nano 14, 14790–14797 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    Article  CAS  Google Scholar 

  19. Senanayak, S. P. et al. A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Sci. Adv. 6, eaaz4948 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, L. et al. A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nat. Nanotechnol. 17, 1206–1213 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Kovalenko, M. V. et al. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021).

    Article  CAS  Google Scholar 

  24. Li, Z. hen et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10, 1234–1242 (2017).

    Article  CAS  Google Scholar 

  25. Li, D. et al. Gate-induced insulator to band-like transport transition in organolead halide perovskite. J. Phy. Chem. Lett. 8, 429–434 (2017).

    Article  Google Scholar 

  26. Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).

    Article  CAS  Google Scholar 

  27. Xiao, J. W. et al. Contact engineering: electrode materials for highly efficient and stable perovskite solar cells. Sol. RRL 1, 1700082 (2017).

    Article  Google Scholar 

  28. Svanstrom, S. et al. Degradation mechanism of silver metal deposited on lead halide perovskites. ACS Appl. Mater. Inter. 12, 7212–7221 (2020).

    Article  Google Scholar 

  29. Boyd, C. C. et al. Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett 3, 1772–1778 (2018).

    Article  CAS  Google Scholar 

  30. Ju, Y. Y. et al. The interactions between halide perovskites and oxygen: from stages to strategies. Matter 7, 3756–3785 (2024).

    Article  CAS  Google Scholar 

  31. Xiao, X. et al. A facile way to synthesize Ag@AgBr cubic cages with efficient visible-light-induced photocatalytic activity. Appl. Catal. B 163, 564–572 (2015).

    Article  CAS  Google Scholar 

  32. Waterhouse, G., Bowmaker, G. & Metson, J. Oxidation of a polycrystalline silver foil by reaction with ozone. Appl. Surf. Sci. 183, 191–204 (2001).

    Article  CAS  Google Scholar 

  33. He, Z., Su, J., Chen, R. & Tang, B. Fabrication of novel p-Ag2O/n-PbBiO2Br heterojunction photocatalysts with enhanced photocatalytic performance under visible-light irradiation. J. Mater. Sci.-Mater. El 30, 20870–20880 (2019).

    Article  CAS  Google Scholar 

  34. Jin, N. et al. Ag nanodot/Mg/Al reflective ohmic contacts simultaneously suitable for n-type and p-type GaN. J. Phy. D-Appl. Phy. 56, 215101 (2023).

    Article  CAS  Google Scholar 

  35. Jayadevan, K., Kumar, N., Mallya, R. & Jacob, K. Use of metastable, dissociated and charged gas species in synthesis: a low pressure analogue of the high pressure technique. J. Mater. Sci. 35, 2429–2434 (2000).

    Article  CAS  Google Scholar 

  36. Gronbeck, H. et al. Mechanism for reversed photoemission core-level shifts of oxidized Ag. Phys. Rev. B 85, 115445 (2012).

    Article  Google Scholar 

  37. Gaarenstroom, S. W. & Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 67, 3500–3506 (1977).

    Article  CAS  Google Scholar 

  38. Han, Y. et al. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Anal. Chem. 83, 5873–5880 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Walsh, L. A. et al. Hard X-ray photoelectron spectroscopy and electrical characterization study of the surface potential in metal/Al2O3/GaAs(100) metal-oxide-semiconductor structures. Phys. Rev. B 88, 045322 (2013).

    Article  Google Scholar 

  40. Yang, L. M. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett 14, 6275–6280 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, Y., Chen, J., Bakr, O. M. & Sun, H.-T. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30, 6589–6613 (2018).

    Article  CAS  Google Scholar 

  42. Muñoz, M. et al. Burstein–Moss shift of n-doped In0.53Ga0.47As/InP. Phy. Rev. B 63, 233302 (2001).

    Article  Google Scholar 

  43. Jiang, Q. et al. Electrochemical lithium doping induced property changes in halide perovskite CsPbBr3 crystal. ACS Energy Lett 3, 264–269 (2017).

    Article  Google Scholar 

  44. Mathieson, A., Feldmann, S. & De Volder, M. Solid-state lithium-ion batteries as a method for doping halide perovskites with an in situ optical readout of dopant concentration. JACS Au 2, 1313–1317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, D. et al. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano 10, 6933–6941 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Thiesbrummel, J. et al. Ion-induced field screening as a dominant factor in perovskite solar cell operational stability. Nat. Energy 9, 664–676 (2024).

    Article  CAS  Google Scholar 

  47. Sze, S. M., Li, Y. & Ng, K. K. Physics of Semiconductor Devices (John Wiley, 2021).

  48. Liu, A. et al. High-performance metal halide perovskite transistors. Nat. Electron. 6, 559–571 (2023).

    Article  CAS  Google Scholar 

  49. Zhu, H. et al. Fabrication of high-performance tin halide perovskite thin-film transistors via chemical solution-based composition engineering. Nat. Protoc. 20, 1915–1929 (2025).

    Article  CAS  PubMed  Google Scholar 

  50. Tsarev, S. et al. Vertically stacked monolithic perovskite colour photodetectors. Nature 642, 592–598 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, Y. et al. Large-area synthesis and patterning of all-inorganic lead halide perovskite thin films and heterostructures. Nano Lett. 21, 1454–1460 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y. L. et al. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 10, 1223–1233 (2017).

    Article  CAS  Google Scholar 

  53. Guan, Z. et al. Perovskite photocatalyst CsPbBr3xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal. B 245, 522–527 (2019).

    Article  CAS  Google Scholar 

  54. Lee, T.-H. & Dickson, R. M. Discrete two-terminal single nanocluster quantum optoelectronic logic operations at room temperature. Proc. Natl Acad. Sci. USA 100, 3043–3046 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, L. et al. Data for ‘Bulk-heterojunction doping in halide perovskites for low-resistance metal contacts’. Figshare https://doi.org/10.6084/m9.figshare.30957728 (2025).

Download references

Acknowledgements

X.D. acknowledges support from the National Science Foundation through grant DMR 2324943. H.W. acknowledges the use of Bridges-2 at the Pittsburgh Supercomputing Center for DFT calculations through allocation PHY230112 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, which is supported by US National Science Foundation grants number 2138259, 2138286, 2138307, 2137603 and 2138296.

Author information

Authors and Affiliations

Authors

Contributions

X.D. conceived the research. L.W. and B.Z. performed device fabrication, characterization and data analysis. B.Z. also carried out the optical characterizations and device simulations. B.H. and Y.Y. assisted with the device fabrication and testing. H.W. carried out the DFT calculations. A.Z. and S.Z. performed the XPS measurements. Q.Q., Z.W., Y.W. and Y.Y. prepared the materials. P.W., D.Z., K.B., A.S., J.Z. and Y.H. discussed the data. L.W., B.Z. and X.D. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Max Lemme, Maryam Mohammadi, Yong-Young Noh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Table 1 and References.

Source data

Source Data Fig. 1

Calculated differential charge distribution.

Source Data Fig. 2

Characterizations of the p-doping effect.

Source Data Fig. 3

Electrical performance of the LHP device with doped contacts.

Source Data Fig. 4

Analysis of the local carrier density, injection mechanism, and contact resistance at the doped contacts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, B., Qian, Q. et al. Bulk-heterojunction doping in lead halide perovskites for low-resistance metal contacts. Nat. Mater. (2026). https://doi.org/10.1038/s41563-026-02485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-026-02485-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing