Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radioisotope-mimetic molecular afterglow probe for downregulated cancer biomarker imaging

Abstract

Molecular afterglow imaging is a biomedical modality with high sensitivity and specificity. However, due to the short half-lives of existing afterglow agents, longitudinal imaging often requires multiple on-site reinductions. Here we report a probe with month-long afterglow luminescence and the ability to target a downregulated liver tumour biomarker. This downregulated-biomarker-activatable afterglow probe (DROP) operates through a self-sustainable photoenergy cycling reaction, during which afterglow resonance energy transfer re-excites the afterglow initiator to regenerate singlet oxygen. This process initiates new afterglow resonance energy transfer cycles, extending the afterglow duration to over 40 days. The long afterglow of DROP enables in vivo imaging over 8 h with a single light preinduction, mimicking the imaging process of radioisotopes. Moreover, DROP quickly becomes inactive in healthy liver tissues due to cytochrome P450 enzyme activity, detecting and delineating tumours as small as 1 mm in diameter for complete surgical resection in both murine and rabbit models. Overall, we provide fundamental guidelines to develop radioisotope-mimetic afterglow luminescence probes and highlight the targeting of downregulated biomarkers as a promising approach in cancer theranostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design concept of DROP and its radioisotope-mimetic afterglow imaging.
Fig. 2: Screening of DROP composition.
Fig. 3: Liver metabolic deactivation of DROP.
Fig. 4: Orthotopic liver tumour imaging in murine models.
Fig. 5: Orthotopic liver tumour imaging in a rabbit model.

Similar content being viewed by others

Data availability

Data generated or analysed during this study are provided as source data or are included in the Supplementary Information. Further data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  2. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

    Article  CAS  Google Scholar 

  4. Schnermann, M. J. Organic dyes for deep bioimaging. Nature 551, 176–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, P. & Pu, K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem. Soc. Rev. 53, 10171–10188 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, M. H. Y., Mo, Y. & Zheng, G. Nano versus molecular: optical imaging approaches to detect and monitor tumor hypoxia. Adv. Healthcare Mater. 10, 2001549 (2021).

    Article  CAS  Google Scholar 

  7. Nadal-Bufi, F. et al. Fluorogenic platform for real-time imaging of subcellular payload release in antibody–drug conjugates. J. Am. Chem. Soc. 147, 7578–7587 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, X., Wang, R., Kwon, N., Ma, H. & Yoon, J. Activatable fluorescent probes for in situ imaging of enzymes. Chem. Soc. Rev. 51, 450–463 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mendive-Tapia, L. & Vendrell, M. Activatable fluorophores for imaging immune cell function. Acc. Chem. Res. 55, 1183–1193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15, 104–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, F., Zhong, Y., Bruns, O., Liang, Y. & Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photonics 18, 535–547 (2024).

    Article  CAS  Google Scholar 

  13. Owens, E. A., Henary, M., El Fakhri, G. & Choi, H. S. Tissue-specific near-infrared fluorescence imaging. Acc. Chem. Res. 49, 1731–1740 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan, J., Dodani, S. C. & Chang, C. J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4, 973–984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He, S., Cheng, P. & Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Waterhouse, D. J., Fitzpatrick, C. R. M., Pogue, B. W., O’Connor, J. P. B. & Bohndiek, S. E. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat. Biomed. Eng. 3, 339–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Gorka, A. P., Nani, R. R., Zhu, J., Mackem, S. & Schnermann, M. J. A near-IR uncaging strategy based on cyanine photochemistry. J. Am. Chem. Soc. 136, 14153–14159 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article  PubMed  Google Scholar 

  20. Zhou, Y. et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 9, 132 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, C. et al. A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics. Nat. Nanotechnol. 20, 286–295 (2025).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. In vivo ultrasound-induced luminescence molecular imaging. Nat. Photonics 18, 334–343 (2024).

    Article  CAS  Google Scholar 

  25. Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, J., Zhao, L., An, W. & Miao, Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem. Soc. Rev. 54, 1429–1452 (2025).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Teng, L., Lou, X.-F., Zhang, X.-B. & Song, G. ‘Four-in-one’ design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. J. Am. Chem. Soc. 145, 5134–5144 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Entradas, T., Waldron, S. & Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochem. Photobiol. B 204, 111787 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  Google Scholar 

  33. Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm ‘luminous pearls’ with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie, C., Zhen, X., Miao, Q., Lyu, Y. & Pu, K. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30, 1801331 (2018).

    Article  Google Scholar 

  35. Chen, W. et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA. 104, 9266–9271 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, J. et al. A self-sustaining near-infrared afterglow chemiluminophore for high-contrast activatable imaging. Angew. Chem. Int. Ed. 63, e202318545 (2024).

    Article  CAS  Google Scholar 

  39. Yan, R. et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc. 141, 10331–10341 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Voskuil, F. J. et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 11, 3257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lencioni, R., Cioni, D., Crocetti, L., Pina, C. D. & Bartolozzi, C. Magnetic resonance imaging of liver tumors. Hepatology 40, 162–171 (2004).

    Article  Google Scholar 

  42. Roberts, L. R. et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology 67, 401–421 (2018).

    Article  PubMed  Google Scholar 

  43. Robinson, P. J. A. Imaging liver metastases—size is important. Cancer Imaging 2, 146–147 (2002).

    Google Scholar 

  44. McNutt, A. T., Li, Y., Meli, R., Aggarwal, R. & Koes, D. R. GNINA1.3: the next increment in molecular docking with deep learning. J. Cheminform. 17, 28 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Green, O. et al. Opening a gateway for chemiluminescence cell imaging: distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent. Sci. 3, 349–358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. 61, e202209793 (2022).

    Article  CAS  Google Scholar 

  47. Ni, X. et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Oushiki, D. et al. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc. 132, 2795–2801 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.D. thanks the National Natural Science Foundation of China (NSFC, 52225310) and the Fundamental Research Funds for the Central Universities, Nankai University (2122021405) for financial support. Y.Z. thanks the NSFC (22322406) for financial support. K.P. thanks the Singapore National Research Foundation (NRF) (NRF-NRFI07-20210005) and the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE-T2EP30220-0010, MOE-T2EP30221-0004) for financial support. G.F. thanks the NSFC (22595402, 52473300) and Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (2023B1212060003) for financial support. G.-Q.Z thanks the NSFC (52203171) and the Scientific Research Foundation of Hebei Educational Committee (BJK2024192) for financial support. We thank Z. Liang for providing the PDX tissues.

Author information

Authors and Affiliations

Authors

Contributions

G.-Q.Z. and G.F. contributed equally to this paper. D.D., Y.Z. and K.P. conceived the study. D.D., Y.Z., K.P., G.-Q.Z. and G.F. designed the experiments. G.-Q.Z. and Z.G. performed the chemical synthesis. G.-Q.Z. performed nanoprobe construction. G.-Q.Z., Z.G. and G.F. performed in vitro characterization. G.F. performed database analysis. L.L. performed molecular dynamics simulation. G.-Q.Z., J.Z. and Z.G. performed in vivo experiments. G.F. and C.X. drew the schematic illustration. K.P., Y.Z., D.D., G.F., C.X. and G.-Q.Z. analysed the data and drafted the manuscript.

Corresponding authors

Correspondence to Yan Zhang, Kanyi Pu or Dan Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Hak Soo Choi, Guosheng Song and Fan Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Schemes 1 and 2, Figs. 1–44 and Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GQ., Feng, G., Xu, C. et al. Radioisotope-mimetic molecular afterglow probe for downregulated cancer biomarker imaging. Nat. Mater. (2026). https://doi.org/10.1038/s41563-026-02507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-026-02507-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing