Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Single-cell transcriptomics across 2,534 microbial species reveals functional heterogeneity in the rumen microbiome

Abstract

Deciphering the activity of individual microbes within complex communities and environments remains a challenge. Here we describe the development of microbiome single-cell transcriptomics using droplet-based single-cell RNA sequencing and pangenome-based computational analysis to characterize the functional heterogeneity of the rumen microbiome. We generated a microbial genome database (the Bovine Gastro Microbial Genome Map) as a functional reference map for the construction of a single-cell transcriptomic atlas of the rumen microbiome. The atlas includes 174,531 microbial cells and 2,534 species, of which 172 are core active species grouped into 12 functional clusters. We detected single-cell-level functional roles, including a key role for Basfia succiniciproducens in the carbohydrate metabolic niche of the rumen microbiome. Furthermore, we explored functional heterogeneity and reveal metabolic niche trajectories driven by biofilm formation pathway genes within B. succiniciproducens. Our results provide a resource for studying the rumen microbiome and illustrate the diverse functions of individual microbial cells that drive their ecological niche stability or adaptation within the ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall workflow of MscT.
Fig. 2: Reference pangenomes of the rumen microbiome with 13,572 non-redundant genomes (average nucleotide identity > 95%).
Fig. 3: Single-cell functional landscape of the rumen microbiome.
Fig. 4: Pathway heterogeneity of functional clusters.
Fig. 5: Metabolic insights into rumen classic carbohydrate pathways.
Fig. 6: Functional heterogeneity and cellular trajectories of B. succiniciproducens.

Similar content being viewed by others

Data availability

All of the raw sequencing data of the MscT have been deposited to the Genome Sequence Archive database with the accession number CRA012211. The genome files of MAGs in the BGMGM, gene annotation files and intermediate files resulting from quality control, benchmarking and other processes have been submitted to the Figshare database at https://figshare.com/articles/dataset/Microbiome_single-cell_transcriptomics_reveal_functional_heterogeneity_of_metabolic_niches_covering_more_than_2_500_species_in_the_rumen/24844344 (ref. 80). Source data are provided with this paper.

Code availability

The main codes and scripts from this study were uploaded to GitHub (https://github.com/J-MimgHui/MscT_codes).

References

  1. Nguyen, C. L. et al. High-resolution analyses of associations between medications, microbiome, and mortality in cancer patients. Cell 186, 2705–2718.e17 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Albertsen, M. et al. Long-read metagenomics paves the way toward a complete microbial tree of life. Nat. Methods 20, 30–31 (2023).

    CAS  PubMed  Google Scholar 

  3. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    CAS  PubMed  Google Scholar 

  5. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021).

    CAS  PubMed  Google Scholar 

  10. Tian, L. et al. Deciphering functional redundancy in the human microbiome. Nat. Commun. 11, 6217 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Windels, E. M. et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J. 13, 1239–1251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lloréns-Rico, V. et al. Single-cell approaches in human microbiome research. Cell 185, 2725–2738 (2022).

    PubMed  Google Scholar 

  13. Ojala, T. et al. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet. 39, 686–702 (2023).

    CAS  PubMed  Google Scholar 

  14. Blattman, S. B. et al. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192–1201 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021).

    CAS  PubMed  Google Scholar 

  16. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891.e14 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, Z. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat. Commun. 14, 5130 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizrahi, I., Wallace, R. J. & Moraïs, S. The rumen microbiome: balancing food security and environmental impacts. Nat. Rev. Microbiol. 19, 553–566 (2021).

    CAS  PubMed  Google Scholar 

  19. Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie, F. et al. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 9, 137 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong, F. et al. The microbiome of the buffalo digestive tract. Nat. Commun. 13, 823 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart, R. D. et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 9, 870 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Wilkinson, T. et al. 1200 high-quality metagenome-assembled genomes from the rumen of African cattle and their relevance in the context of sub-optimal feeding. Genome Biol. 21, 229 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue, M.-Y. et al. Investigation of fiber utilization in the rumen of dairy cows based on metagenome-assembled genomes and single-cell RNA sequencing. Microbiome 10, 11 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. et al. A unified catalog of 19,251 non-human reference species genomes provides new insights into the mammalian gut microbiomes. Preprint at BioRxiv https://doi.org/10.1101/2022.05.16.491731 (2022).

  26. Solden, L. M. et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat. Microbiol. 3, 1274–1284 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS  PubMed  Google Scholar 

  28. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    CAS  PubMed  Google Scholar 

  29. Watson, M. New insights from 33,813 publicly available metagenome-assembled-genomes (MAGs) assembled from the rumen microbiome. Preprint at BioRxiv https://doi.org/10.1101/2021.04.02.438222 (2021).

  30. Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

    PubMed  Google Scholar 

  31. Escalas, A. et al. Microbial functional diversity: from concepts to applications. Ecol. Evol. 9, 12000–12016 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Tikhonov, M. Theoretical microbial ecology without species. Phys. Rev. E 96, 032410 (2017).

    PubMed  Google Scholar 

  33. Taxis, T. M. et al. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res. 43, 9600–9612 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, M. et al. Even allocation of benefits stabilizes microbial community engaged in metabolic division of labor. Cell Rep. 40, 111410 (2022).

    CAS  PubMed  Google Scholar 

  35. Wu, G. et al. Two competing guilds as a core microbiome signature for health recovery. Preprint at BioRxiv https://doi.org/10.1101/2022.05.02.490290 (2022).

  36. Liu, H. et al. Ecological dynamics of the gut microbiome in response to dietary fiber. ISME J. 16, 2040–2055 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stacpoole, P. W. & McCall, C. E. The pyruvate dehydrogenase complex: life’s essential, vulnerable and druggable energy homeostat. Mitochondrion 70, 59–102 (2023).

    CAS  PubMed  Google Scholar 

  38. Sun, H.-Z. et al. Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows. Bioinformatics 36, 2530–2537 (2020).

    CAS  PubMed  Google Scholar 

  39. Cimini, D. et al. Improved production of succinic acid from Basfia succiniciproducens growing on A. donax and process evaluation through material flow analysis. Biotechnol. Biofuels 12, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Kuhnert, P. et al. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int. J. Syst. Evol. Microbiol. 60, 44–50 (2010).

    CAS  PubMed  Google Scholar 

  41. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, Q. et al. Prediction of prokaryotic transposases from protein features with machine learning approaches. Microb. Genom. 7, 000611 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Atkovska, K. et al. Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci. Rep. 7, 12027 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Maertens, G. N. et al. Structure and function of retroviral integrase. Nat. Rev. Microbiol. 20, 20–34 (2022).

    CAS  PubMed  Google Scholar 

  46. Latour, X. The evanescent GacS signal. Microorganisms 8, 1746 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Q. S. et al. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. ISME J. 16, 2535–2546 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Foster, K. R. et al. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS  PubMed  Google Scholar 

  49. Friedman, N. et al. Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environ. Microbiol. 19, 3365–3373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Moraïs, S. et al. The road not taken: the rumen microbiome, functional groups, and community states. Trends Microbiol. 27, 538–549 (2019).

    PubMed  Google Scholar 

  51. Nayfach, S. et al. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mizrahi, I. et al. Review: the compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal 12, s220–s232 (2018).

    CAS  PubMed  Google Scholar 

  53. Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36, 808–812 (2004).

    CAS  PubMed  Google Scholar 

  54. Bolger, A. et al. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, D. et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS  PubMed  Google Scholar 

  56. Kang, D. D. et al. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Parks, D. H. et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Uritskiy, G. V. et al. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeng, S. et al. A compendium of 32,277 metagenome-assembled genomes and over 80 million genes from the early-life human gut microbiome. Nat. Commun. 13, 5139 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Olm, M. R. et al. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaumeil, P.-A. et al. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Letunic, I. et al. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Google Scholar 

  67. Buchfink, B. et al. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    PubMed  PubMed Central  Google Scholar 

  69. Kanehisa, M. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    CAS  PubMed  Google Scholar 

  71. Li, H. et al. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. McGinnis, C. S. et al. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zappia, L. et al. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience 7, giy083 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Bu, D. et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 49, W317–W325 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci. Rep. 8, 10872 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Minghui, J. Microbiome single-cell transcriptomics reveal functional heterogeneity of metabolic niches covering more than 2,500 species in the rumen. Figshare https://doi.org/10.6084/m9.figshare.24844344.v1 (2024).

Download references

Acknowledgements

We thank all of the members of the Institute of Dairy Science, College of Animal Sciences, Zhejiang University for assistance with sample collection. This work was supported by the National Natural Science Foundation of China (grant no. 32322077 to H.-Z.S.), National Key R&D Program of China (grant no. 2022YFD1301700 and 2023YFE0123100 to H.-Z.S.), Natural Science Foundation of Zhejiang Province (grant no. LR23C170001 to H.-Z.S.) and Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (grant no. 2021R01012 to Y.W.).

Author information

Authors and Affiliations

Authors

Contributions

H.-Z.S. supervised the project and designed the research. H.-Z.S., M.J., S.Z., Y. Tang, X.L. and Y. Tao constructed the BGMGM. M.J., S.Z., Y. Tang and X.L. collected the rumen fluid samples. M.S. performed the RNA-seq experiments with assistance from Y.W. M.J., S.Z., T.Z. and Y. Tao performed the species annotation and gene alignment at the single-cell level. M.J. and S.Z. performed the cluster analysis, cell-type annotation, pathway analysis and pseudo-time analysis. M.J., S.Z., H.C. and H.-Z.S. interpreted the data. M.J., S.Z. and J.X. visualized the results. M.J., S.Z. and M.-Y.X. wrote the paper. H.-Z.S., Y.W. and J.-X.L. revised the paper. All authors read and approved the final version of the paper.

Corresponding authors

Correspondence to Yongcheng Wang or Hui-Zeng Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Karthik Raman, James Volmer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overall workflow of BGMGM construction.

Workflow for the construction of the Bovine Gastro Microbial Genome Map (BGMGM).

Extended Data Fig. 2 The venn plot of annotated genes and the phylogenic tree of 47 Archaea MAGs.

(A) The Venn plot of BGMGM genes annotated by KEGG database, GO database, CAZy database, and COG database. (B) The phylogenic tree of 47 Archaea MAGs. MAGs: metagenome assembled genomes. BGMGM, bovine gastro microbial genome map.

Extended Data Fig. 3 Microbiome single-cell transcriptomics computational analysis pipeline and performance.

(A) Computational analysis pipeline including microbial pan-genome mapping, taxonomic level-by-level annotation, and functional cluster-based atlas construction. (B) The UMI numbers and unique gene numbers in each sample. UMI, unique molecular identifiers. Each box represents the interquartile range (IQR), in which the middle line represents the median. The whiskers extend to 1.5 × IQR.

Source data

Extended Data Fig. 4 Heterogeneity among different functional clusters and species.

(A) The cell and gene filtering steps as well as the benchmarking processes to determine the dimension and resolution values. (B) The UMAP plots for cells of different samples. (C) The UMAP plots for cells of different genera. UMAP, Uniform Manifold Approximation and Projection.

Extended Data Fig. 5 Differences between six functional clusters in the same species analyzed by the Kruskal–Wallis test with Dunn post hoc tests.

(A) The P values of inter-cluster comparison for FGPs in eight species. The UMAP plot presented the functional clusters involved in the analysis. The heat map showed the P values. (B) Dunn post hoc test performed on the FGPs of carbohydrate transport and metabolism. (C) Dunn post hoc test performed on the FGPs of lipid transport and metabolism. (D) Dunn post hoc test performed on the FGPs of amino acid transport and metabolism. FGP: functional gene proportion (the number of functional genes in a certain pathway/the number of all annotated genes in single cell); UMAP, Uniform Manifold Approximation and Projection.

Extended Data Fig. 6 SPIEC-EASI analysis.

The interaction networks of 213 cell units and the interactions between the HSP90+ HMACs—Basfia_succiniciproducens and other associated cell units. SPIEC-EASI, Sparse Inverse Covariance Estimation for Ecological Association Inference.

Extended Data Fig. 7 Carbohydrate metabolic activity analysis.

Average classic carbohydrate metabolic FGPs of 10 sub-functional clusters generated from HMACs. FGPs, functional gene proportions, the number of functional genes in a certain pathway/the number of all annotated genes; HMACs, high metabolic activity cells.

Extended Data Fig. 8 Active cell proportion analysis.

Active cell proportion of 10 sub-functional clusters generated from HMACs in each classic carbohydrate metabolic pathway. HMACs, high metabolic activity cells.

Extended Data Fig. 9 Marker genes and biofilm formation pathway activity analysis of 8 sub-population functional clusters form B. succiniciproducen cells.

(A) The UMAP plot of eiight sub-population functional clusters form B. succiniciproducen cells. (B) Marker genes of eight sub-population functional clusters form B. succiniciproducen cells. (C) Transformational relationships between clusters “Multi signal cells”, “Integrase+ cells”, and “Transposase+ formate/nitrite TCs”. (D) “Biofilm.formation_P” pathway activity and two key gene proportion, n = 200 and 121 biologically independent cells. Data are presented as mean values +/- SEM. Two-side Wilcoxon rank sum test was used for data analysis. UMAP, Uniform Manifold Approximation and Projection.

Source data

Supplementary information

Reporting Summary

41564_2024_1723_MOESM2_ESM.xlsx

Supplementary Table 1 Published ruminant metagenomics datasets used in this study. Supplementary Table 2 Quality of all 55,715 genomes of the BGMGM (54,403 public genomes and 1,312 in-house genomes). Supplementary Table 3 Quality and annotation information for the 47,241 filtered genomes of the BGMGM. Supplementary Table 4 Quality and annotation information for the 13,572 non-redundant genomes of the BGMGM. Supplementary Table 5 Marker gene information for 12 functional clusters and ten sub-functional clusters of HMACs and eight sub-functional clusters of B. succiniciproducens cells. Supplementary Table 6 Average FGPs of 12 functional clusters in each COG pathway. Supplementary Table 7 P values of inter-cluster difference analysis between six functional clusters in 89 species. A Benjamini–Hochberg adjustment was made for multiple comparisons. Supplementary Table 8 Functional gene numbers of 5,636 active cells of HMACs in the classic carbohydrate pathways. Supplementary Table 9 The results of KEGG enrichment analysis. A two-sided Fisher’s exact test was used for data analysis. A Benjamini–Hochberg adjustment was made for multiple comparisons. Supplementary Table 10 Functional gene numbers of B. succiniciproducens cells in the top 14 enriched KEGG pathways. Supplementary Table 11 Functional gene numbers of B. succiniciproducens cells in the classic carbohydrate pathways. Supplementary Table 12 Read number thresholds, cell numbers, average nFeatures and average nCounts of 14 samples. Supplementary Table 13 Annotation results of genes used in classic carbohydrate pathways. Supplementary Table 14 Cell metadata of pseudo-time analysis.

Source data

Source Data Fig. 1

Ingredients and nutrient composition of the total mixed ration fed to the cows.

Source Data Fig. 3

Cell proportion data of core species in Fig. 3c.

Source Data Fig. 5

Unprocessed statistical data of Fig. 5a.

Source Data Fig. 6

Unprocessed statistical data of Fig. 6b and a table of enrichment analysis formula.

Source Data Extended Data Fig. 3

Unprocessed data and summary data for Extended Data Fig. 3b.

Source Data Extended Data Fig. 9

Unprocessed statistical data for Extended Data Fig. 9d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Zhu, S., Xue, MY. et al. Single-cell transcriptomics across 2,534 microbial species reveals functional heterogeneity in the rumen microbiome. Nat Microbiol 9, 1884–1898 (2024). https://doi.org/10.1038/s41564-024-01723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01723-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology