Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specialized Listeria monocytogenes produce tailocins to provide a population-level competitive growth advantage

Abstract

Tailocins are phage tail-like bacteriocins produced by various bacterial species to kill kin competitors. Given that tailocin release is dependent upon cell lysis, regulation of tailocin production at the single-cell and population level remains unclear. Here we used flow cytometry, competition assays and structural characterization of tailocin production in a human bacterial pathogen, Listeria monocytogenes. We revealed that a specialized subpopulation, constituting less than 1% of the total bacterial population, differentiates to produce, assemble and store thousands of tailocin particles. Tailocins are packed in a highly ordered manner, clustered in a liquid crystalline phase that occupies a substantial volume of the cell. Tailocin production confers a competitive growth advantage for the rest of the population. This study provides molecular insights into tailocin production as a form of altruism, showing how cell specialization within bacterial populations can confer competitive advantages at the population level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monocin production in an L. monocytogenes strain 10403S population and its impact on bacterial fitness.
Fig. 2: TEM sections reveal ordered clusters of monocins in producer cells.
Fig. 3: Monocin-producing cells are packed with thousands of monocin particles clustered in an orderly manner.
Fig. 4: Semi-ordered monocin clusters, possibly representing the early stages of phase transition.
Fig. 5: The molecular structure of the monocin tail tube.

Similar content being viewed by others

Data availability

Example tomograms (Tomo2, Tomo5, Tomo10, Tomo12, Tomo15, Tomo16, Tomo23) and cryo-EM maps were uploaded to the Electron Microscopy Data Bank with accession code EMD-18416. Atomic coordinates of the tail tube were uploaded to the Protein Data Bank with accession code 8QHS. Structures of TTPs that were used in this study for comparison are available in the Protein Data Bank (PDB ID 6TUI, 6TBA, 7T2E, 6V8I, 6YQ5). Source data are provided with this paper.

Code availability

No custom code was used or developed for the analysis of data presented in this paper.

References

  1. Scholl, D. Phage tail-like bacteriocins. Annu. Rev. Virol. 4, 453–467 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Patz, S. et al. Phage tail-like particles are versatile bacterial nanomachines—a mini-review. J. Adv. Res. 19, 75–84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Freitag, N. E., Port, G. C. & Miner, M. D. Listeria monocytogenes—from saprophyte to intracellular pathogen. Nat. Rev. Microbiol. 7, 623–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Argov, T., Rabinovich, L., Sigal, N. & Herskovits, A. A. An effective counterselection system for Listeria monocytogenes and its use to characterize the monocin genomic region of strain 10403S. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02927-16 (2017).

  6. Lee, G. et al. F-type bacteriocins of Listeria monocytogenes: a new class of phage tail-like structures reveals broad parallel coevolution between tailed bacteriophages and high-molecular-weight bacteriocins. J. Bacteriol. 198, 2784–2793 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zink, R., Loessner, M. J. & Scherer, S. Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/endolysin gene. Microbiology 141, 2577–2584 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Argov, T. et al. Coordination of cohabiting phage elements supports bacteria–phage cooperation. Nat. Commun. 10, 5288 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nanda, A. M. et al. Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level. J. Bacteriol. 196, 180–188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. McCool, J. D. et al. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53, 1343–1357 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science https://doi.org/10.1126/science.abi4882 (2021).

  12. Pasechnek, A. et al. Active lysogeny in Listeria monocytogenes is a bacteria–phage adaptive response in the mammalian environment. Cell Rep. 32, 107956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175, 681–686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zinke, M. et al. Architecture of the flexible tail tube of bacteriophage SPP1. Nat. Commun. 11, 5759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kizziah, J. L., Manning, K. A., Dearborn, A. D. & Dokland, T. Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage. PLoS Pathog. 16, e1008314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Z., Claessen, D. & Rozen, D. E. Understanding microbial divisions of labor. Front. Microbiol. 7, 2070 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001).

    Article  PubMed  Google Scholar 

  19. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Gestel, J., Vlamakis, H. & Kolter, R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 13, e1002141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dragos, A. et al. Division of labor during biofilm matrix production. Curr. Biol. 28, 1903–1913.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Toole, G. A. To build a biofilm. J. Bacteriol. 185, 2687–2689 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Rosenthal, A. Z. et al. Metabolic interactions between dynamic bacterial subpopulations. eLife https://doi.org/10.7554/eLife.33099 (2018).

  25. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Gillor, O., Vriezen, J. A. C. & Riley, M. A. The role of SOS boxes in enteric bacteriocin regulation. Microbiology 154, 1783–1792 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Shimoni, Y., Altuvia, S., Margalit, H. & Biham, O. Stochastic analysis of the SOS response in Escherichia coli. PLoS ONE 4, e5363 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vacheron, J., Heiman, C. M. & Keel, C. Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion. Commun. Biol. 4, 87 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mulec, J. et al. A cka-gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J. Bacteriol. 185, 654–659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mrak, P., Podlesek, Z., van Putten, J. P. & Zgur-Bertok, D. Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors. Mol. Genet. Genomics 277, 391–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Ladouceur, A. M. et al. Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 18540–18549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al-Husini, N., Tomares, D. T., Bitar, O., Childers, W. S. & Schrader, J. M. α-Proteobacterial RNA degradosomes assemble liquid–liquid phase-separated RNP bodies. Mol. Cell 71, 1027–1039.e14 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Jin, D. J., Mata Martin, C., Sun, Z., Cagliero, C. & Zhou, Y. N. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Crit. Rev. Biochem. Mol. Biol. 52, 96–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Labarde, A. et al. Temporal compartmentalization of viral infection in bacterial cells. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2018297118 (2021).

  36. Chaikeeratisak, V. et al. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177, 1771–1780.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shikuma, N. J. et al. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343, 529–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bardy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Langlois, C. et al. Bacteriophage SPP1 tail tube protein self-assembles into beta-structure-rich tubes. J. Biol. Chem. 290, 3836–3849 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Azulay, G. et al. A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response. Cell Rep. 39, 110723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  45. Duchesne, L., Gentili, D., Comes-Franchini, M. & Fernig, D. G. Robust ligand shells for biological applications of gold nanoparticles. Langmuir 24, 13572–13580 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by an ERC Consolidator Grant (Co-Patho-phage, 817842) from the European Research Council awarded to A.A.H. and by Instruct-ERIC to A.A.H. via the Weizmann Institute of Science (PID 18811). The electron microscopy studies were partially supported by the Irving and Cherna Moskowitz Center for Nano and Bio-nano Imaging (Weizmann Institute of Science).

Author information

Authors and Affiliations

Authors

Contributions

N.S., R.L.-W., S.S. and G.A. performed the experiments. I.B. performed bioinformatic analysis. V.H. performed negative-stain EM, S.G.W. collected cryo-EM and cryo-ET data and performed tomogram reconstructions. N.E. collected single-particle data and performed data analysis of cryo-ET. R.Z., R.Z. and G.A.F. analysed cryo-EM and cryo-ET data and reconstructed the tail-tube structure. A.A.H. prepared the paper.

Corresponding author

Correspondence to Anat A. Herskovits.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Andreas Peschel, Jordan Vacheron and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Growth analysis of Listeria strains.

L. monocytogenes strain 10403 S and its related mutants, as well as L. monocytogenes Scott A strain were grown in the rich BHI medium at 30 °C. The data represent an average of three biological repeats and the error bars represent the standard deviation of the independent experiments.

Source data

Extended Data Fig. 2 Identification of striped bacteria by TEM.

a, Representative TEM micrographs of stained thin plastic sections of WT L. monocytogenes 10403 S bacteria grown without MMC. Arrows point to stripped bacteria. b, Representative TEM micrographs of stained thin plastic sections of WT L. monocytogenes 10403 S bacteria grown with MMC.

Extended Data Fig. 3 The striped phenotype is dependent on monocin production.

Representative TEM micrographs of stained thin plastic sections of (a) L. monocytogenes 10403 S bacteria ectopically expressing MpaR from the pPL2 plasmid using the tet promoter grown with MMC, (b) L. monocytogenes 10403 S bacteria deleted of the monocin structural and lysis genes (Δmon-struc-lys) ectopically expressing MpaR from the pPL2 plasmid using the tet promoter grown with MMC, and (c) Phagecured L. monocytogenes 10403 S bacteria ectopically expressing MpaR from the pPL2 plasmid using the tet promoter grown with MMC.

Extended Data Fig. 4 Bacillus subtilis ectopically expressing the monocin genes form stripes like those of L. monocytogenes.

Representative TEM micrographs of stained thin plastic sections of B. subtilis bacteria expressing or not expressing the monocin gene cluster (without the holin and lysin genes), in strain sGL-157 (a) and in strain Δ8 (b)6.

Extended Data Fig. 5 Additional tomograms of monocin-producing cells.

Slices through representative tomograms obtained by cryo-ET of intact phagecured L. monocytogenes 10403 S bacteria ectopically expressing MpaR under MMC treatment. (Tomo5, 12 and 16, Supplementary Movies 3, 4 and 5, respectively).

Extended Data Fig. 6 Ordered monocin arrays in bacteria.

Slices through a representative tomogram of a monocin-producing cell (Tomo10, relates to Fig. 3). a, A slice through five layers of ordered arrays of monocins. The volume surrounding the arrays is devoid of ribosomes. (b-c, e) Views of the slicing planes designated by the violet, yellow and cyan lines in panel (a). (d) Focus on a five-slice averaged sub-region in panel (a), marked by the red frame (also shown in Fig. 3e). Scales in (a-c) and (e) are 100 nm, and 25 nm in (d).

Extended Data Fig. 7 Cryo-EM single particle analysis.

a. A representative cryo-EM micrograph. White arrows indicate the three types of particles observed (Scale bar represents 30 nm). b. 2D class averages of the three types of particles identified in the micrographs. Type 1 was manually selected for further processing. c, Fourier Shell Correlation (FSC) measured by the Gold-standard method. d, Cryo-EM map obtained by applying helical symmetry (optimized helical twist - 25.08°, optimized helical rise - 39.30 Å). The map is colored by local resolution, estimated by CryoSPARC43 and prepared in UCSF-Chimera47.

Extended Data Fig. 8 Intact monocins produced by the Δ15-mttP mutant.

A TEM image of stained free monocin particles produced by L. monocytogenes 10403 S bacteria expressing the Δ15-MttP mutated protein, treated with MMC. Bacterial lysates were filtered through 0.22 μm filters, and the monocin particles were further precipitated using PEG-8000. A representative image is shown.

Supplementary information

Supplementary Information

Supplementary Tables 1–5.

Reporting Summary

Peer Review File

Supplementary Video 1

STEM tomography of a plastic-embedded bacterial section.

Supplementary Video 2

Cryo-ET tomogram of a monocin-producing cell showing ordered monocin clusters.

Supplementary Video 3

Cryo-ET tomogram of a monocin-producing cell showing ordered monocin clusters.

Supplementary Video 4

Cryo-ET tomogram of a monocin-producing cell showing ordered monocin clusters.

Supplementary Video 5

Cryo-ET tomogram of a monocin-producing cell showing ordered monocin clusters.

Supplementary Video 6

Cube segmentation of cryo-ET tomogram of an ordered monocin array.

Supplementary Video 7

A view of monocins organized in rows within the clusters.

Supplementary Video 8

Cryo-ET tomogram of a monocin-producing cell.

Supplementary Video 9

Cryo-ET tomogram of a monocin-producing cell showing semi-ordered clusters.

Supplementary Video 10

Cryo-ET tomogram of a monocin-producing cell showing isotropic distribution of monocins.

Supplementary Video 11

Cryo-ET tomogram of a monocin-producing cell with ordered monocin clusters showing the aligned tilt series.

Source data

Source Data Fig. 1

Statistical source data and gating strategy.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigal, N., Lichtenstein-Wolfheim, R., Schlussel, S. et al. Specialized Listeria monocytogenes produce tailocins to provide a population-level competitive growth advantage. Nat Microbiol 9, 2727–2737 (2024). https://doi.org/10.1038/s41564-024-01793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01793-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology