Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression level of anti-phage defence systems controls a trade-off between protection range and autoimmunity

Abstract

The evolutionary arms race between bacteria and phages has given rise to elaborate anti-phage defence mechanisms. Although many of these systems have been characterized at the molecular level, the general principles and constraints at play are underexplored. It is broadly recognized that in addition to the protection they provide, these systems also bear a substantial cost. Here we identify an expression-dependent trade-off between the protection range of defence systems and the fitness burden they impose. We first focus on the SpbK system of Bacillus subtilis and then generalize to other systems across a range of bacteria. We show that increasing expression of defence systems enhances their protection range, and provide evidence that this is achieved by overwhelming phage strategies for circumventing bacterial defence. However, for most systems tested, increased expression also leads to self-inflicted toxicity. This trade-off between protection and autoimmunity may shape the evolution of regulatory strategies and favour the coexistence of multiple systems within a single genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of the spbK defence system extends its protection range.
Fig. 2: Extended protection range upon overexpression occurs in multiple defence systems and depends on overcoming different counter-defence strategies.
Fig. 3: Defence overexpression leads to autoimmunity in multiple defence systems.
Fig. 4: Illustration of the expression-controlled trade-off between the benefit of protection range and the cost of autoimmunity.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

Code availability

Code used to generate all figures is provided in the supplementary files.

References

  1. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adler, B. A. et al. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat. Microbiol. 7, 1967–1979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LeRoux, M. et al. The DarTG toxin–antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat. Microbiol. 7, 1028–1040 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, C. M., Harden, M. M. & Grossman, A. D. Interactions between mobile genetic elements: an anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage. PLoS Genet. 18, e1010065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, T. et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 612, 132–140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Béchon, N. et al. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat. Commun. 15, 9860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srikant, S., Guegler, C. K. & Laub, M. T. The evolution of a counter-defense mechanism in a virus constrains its host range. eLife 11, e79549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stokar-Avihail, A. et al. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 186, 1863–1876.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Samuel, B., Mittelman, K., Croitoru, S. Y., Ben Haim, M. & Burstein, D. Diverse anti-defence systems are encoded in the leading region of plasmids. Nature 635, 186–192 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yirmiya, E. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature 625, 352–359 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Tesson, F. et al. Exploring the diversity of anti-defense systems across prokaryotes, phages and mobile genetic elements. Nucleic Acids Res. 53, gkae1171 (2025).

    Article  PubMed  Google Scholar 

  19. Benzer, S. Fine structure of a genetic region in bacteriophage. Proc. Natl Acad. Sci. USA 41, 344–354 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koonin, E. V. & Makarova, K. S. Anti-CRISPRs on the march. Science 362, 156–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol. Biol. 15, 43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koonin, E. V., Makarova, K. S., Wolf, Y. I. & Krupovic, M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21, 119–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Refardt, D., Bergmiller, T. & Kümmerli, R. Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection. Proc. R. Soc. B 280, 20123035 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berngruber, T. W., Lion, S. & Gandon, S. Evolution of suicide as a defence strategy against pathogens in a spatially structured environment. Ecol. Lett. 16, 446–453 (2013).

    Article  PubMed  Google Scholar 

  25. Pleška, M. et al. Bacterial autoimmunity due to a restriction-modification system. Curr. Biol. 26, 404–409 (2016).

    Article  PubMed  Google Scholar 

  26. Severin, G. B. et al. Activation of a Vibrio cholerae CBASS anti-phage system by quorum sensing and folate depletion. mBio 14, e0087523 (2023).

    Article  PubMed  Google Scholar 

  27. Patterson, A. G. et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64, 1102–1108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Høyland-Kroghsbo, N. M. et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl Acad. Sci. USA 114, 131–135 (2017).

    Article  PubMed  Google Scholar 

  29. Quax, T. E. F. et al. Massive activation of archaeal defense genes during viral infection. J. Virol. 87, 8419–8428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeLong, J. P. et al. Towards an integrative view of virus phenotypes. Nat. Rev. Microbiol. 20, 83–94 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Fusco, S. et al. Transcriptome analysis of Sulfolobus solfataricus infected with two related fuselloviruses reveals novel insights into the regulation of CRISPR-Cas system. Biochimie 118, 322–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Workman, R. E. et al. Anti-CRISPR proteins trigger a burst of CRISPR-Cas9 expression that enhances phage defense. Cell Rep. 43, 113849 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loyo, C. L. & Grossman, A. D. A phage-encoded counter-defense inhibits an NAD-degrading anti-phage defense system. PLoS Genet. https://doi.org/10.1371/journal.pgen.1011551 (2025).

  36. Weiner, M. P. & Zahler, S. A. Genome homology and host range of some SPβ-related bacteriophages of Bacillus subtilis and Bacillus amyloliquefaciens. J. Gen. Virol. 69, 1307–1315 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Kohm, K. & Hertel, R. The life cycle of SPβ and related phages. Arch. Virol. 166, 2119–2130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noyer-Weidner, M., Jentsch, S., Pawlek, B., Günthert, U. & Trautner, T. A. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP beta, phi 3T, and rho 11. J. Virol. 46, 446–453 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kohm, K. et al. Structural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ. Nucleic Acids Res. 51, 9452–9474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brady, A. et al. The arbitrium system controls prophage induction. Curr. Biol. 31, 5037–5045.e3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Warner, F. D., Kitos, G. A., Romano, M. P. & Hemphill, H. E. Characterization of SPβ: a temperate bacteriophage from Bacillus subtilis 168M. Can. J. Microbiol. 23, 45–51 (1977).

    Article  CAS  Google Scholar 

  42. Dedeo, C. L., Cingolani, G. & Teschke, C. M. Portal protein: the orchestrator of capsid assembly for the dsDNA tailed bacteriophages and herpesviruses. Annu. Rev. Virol. 6, 141–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simpson, A. A. et al. Structure determination of the head–tail connector of bacteriophage φ29. Acta Crystallogr. D 57, 1260–1269 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Simpson, A. A. et al. Structure of the bacteriophage φ29 DNA packaging motor. Nature 408, 745–750 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guasch, A. et al. Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage φ29 connector particle. J. Mol. Biol. 315, 663–676 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Mahata, T. et al. Gamma-Mobile-Trio systems are mobile elements rich in bacterial defensive and offensive tools. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01840-5 (2024).

  47. Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Antine, S. P. et al. Structural basis of Gabija anti-phage defence and viral immune evasion. Nature 625, 360–365 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat. Microbiol. 7, 1849–1856 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Jaskólska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604, 323–329 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cheng, R. et al. A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Res. 49, 5216–5229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, Y. et al. PtuA and PtuB assemble into an inflammasome-like oligomer for anti-phage defense. Nat. Struct. Mol. Biol. 31, 413–423 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, Y. et al. Structure and activation mechanism of a Lamassu phage defence system. Preprint at bioRxiv https://doi.org/10.1101/2025.03.14.643221 (2025).

  54. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Aframian, N. & Eldar, A. Abortive infection antiphage defense systems: separating mechanism and phenotype. Trends Microbiol. 31, 1003–1012 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Rousset, F. & Sorek, R. The evolutionary success of regulated cell death in bacterial immunity. Curr. Opin. Microbiol. 74, 102312 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, Y. et al. Bacterial defense systems exhibit synergistic anti-phage activity. Cell Host Microbe 32, 557–572.e6 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harwood, C. R. & Cutting, S. M. (eds) Molecular Biological Methods for Bacillus (John Wiley, 1990).

Download references

Acknowledgements

We thank S. Pollak and J. Garb for fruitful discussions, and members of the Eldar lab for comments on the paper. We also thank T. Mahata, U. Qimron and D. Salomon for providing GAPS4 strains and for fruitful discussions. The Eldar lab is funded by European Research Council grant 101118890 and by Israel Science Foundation grant 2228/21. N.A. was supported by the Israeli Academy of Science’s Adams Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.E. and N.A. designed the study. All experiments were performed by S.O.B unless indicated otherwise. S.O.B., T.H. and N.A. performed phage infection experiments. S.O.B. and P.G. performed RT–qPCR experiments. A.E. and N.A. wrote the paper. A.E. supervised the study.

Corresponding author

Correspondence to Avigdor Eldar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Edze Westra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Native and induced spbK relative expression levels.

(a) Relative transcript levels of spbK under different conditions, measured by RT-qPCR (methods). spbKICE is a strain harboring the full ICEBs1 element, and spbKwt a strain harboring spbK alone under its native promoter. Shown are means and error bars represent s.e.m. Points represents n = 3 biological repeats. (b) YFP expression under an IPTG-inducible promoter at different concentrations of IPTG. Shown are geometric means and s.e.m of the log. Individual points represent n = 3 biological repeats.

Extended Data Fig. 2 PFU/ml of different phages 2 hrs post infection of strains harboring spbK at different expression levels.

Shown are geometric means and s.e.m of the log. Individual points represent n = 3 biological repeats. * marks p < 0.05, ** marks p < 0.005, and *** marks p < 0.0005 (two-sided t-test).

Extended Data Fig. 3 Growth curves of bacterial strains expressing spbK at different expression levels, infected by different phages at MOI = 0.1.

Mean OD of n = 3 biological repeats and s.e.m (lighter shade) are shown.

Extended Data Fig. 4 Growth curves of cells coexpressing the natively expressed spbK gene and xylose-induced portal proteins of either phage SPO1 (gp3.3; left-hand side) or ϕ105 (gp04; right-hand side).

Mean OD of n = 3 biological repeats and s.e.m (lighter shade) are shown.

Extended Data Fig. 5 Growth curves of bacterial strains expressing Gabija at different expression levels, infected by different phages at MOI = 0.1.

Mean OD of n = 3 biological repeats and s.e.m (lighter shade) are shown.

Extended Data Fig. 6 Growth curves of bacterial strains expressing Lamassu at different expression levels, infected by different phages at MOI = 0.1.

Mean OD of n = 3 biological repeats and s.e.m (lighter shade) are shown.

Extended Data Fig. 7 Growth curves of bacterial strains expressing Septu at different expression levels, infected by different phages at MOI = 0.1.

Mean OD of n = 3 biological repeats and s.e.m (lighter shade) are shown.

Extended Data Fig. 8 PFU/ml of different phages 2 hrs post infection of strains harboring different system at different expression levels.

(a) Natively-expressed Lamassu shows weak but statistically significant effect against phages ϕ3T, ϕ3T-vir, and SPR. All strains were supplemented with 2% xylose. (b) Septu protects against SPO1 when overexpressed but not under native expression. Notice that protection against ϕ3T under native expression is only significant when applying a one-sided rather than two-sided t-test. All strains were supplemented with 50 μM IPTG. Shown are geometric means and s.e.m of the log. Individual points represent n = 3 biological repeats. * marks p < 0.05, and ** marks p < 0.005 (two-sided t-test).

Extended Data Fig. 9 Growth curves of E. coli bacterial strains expressing GAPS4 at different expression levels, infected by different phages at MOI = 0.1.

Mean OD of n = 3 biological repeats and s.e.m (lighter shade) are shown.

Extended Data Fig. 10 PFU/ml of EOP assays of different phages infecting strains expressing dsr2 at different levels.

Shown are geometric means and s.e.m of the log for phage SPR (a), an evading SPR-SPβ hybrid (b), a neutralizing SPR-SPβ hybrid (c) and phage SPβ (d). Individual points represent n = 3 biological repeats.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Tables 1–3

1. Strain list. 2. Plasmid list. 3. Primer list.

Supplementary Data

Directory with data and code used to generate all figures, including all data files and code, as well as plate reader data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aframian, N., Omer Bendori, S., Hen, T. et al. Expression level of anti-phage defence systems controls a trade-off between protection range and autoimmunity. Nat Microbiol 10, 1954–1962 (2025). https://doi.org/10.1038/s41564-025-02063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02063-y

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology