Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carotenoids bind rhodopsins and act as photocycle-accelerating pigments in marine Bacteroidota

Abstract

Microbial rhodopsins are photoreceptor proteins widely distributed in marine microorganisms that harness light energy and support marine ecosystems. While retinal is typically the sole chromophore in microbial rhodopsins, some proteorhodopsins, which are proton-pumping rhodopsins abundant in the ocean, use carotenoid antennae to transfer light energy to retinal. However, the mechanism by which carotenoids enhance rhodopsin functions remains unclear. Here, using the marine Bacteroidota isolate Nonlabens marinus S1-08T, we reconstituted complexes of rhodopsins with the carotenoid myxol and detected energy transfer to retinal in both proteorhodopsin and chloride ion-pumping rhodopsin. Carotenoid binding facilitated light harvesting and accelerated the photocycle, thereby improving the light utilization efficiency of proteorhodopsin. Cryogenic electron microscopy structural analysis further revealed the molecular architecture of the carotenoid–rhodopsin complexes. The ability to bind carotenoids is conserved in rhodopsins of the marine-dominant phylum Bacteroidota, which are widely transcribed in the photic zone. These findings reveal how carotenoids enhance rhodopsin functions in marine Bacteroidota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three types of rhodopsin from N. marinus S1-08T bind to carotenoids extracted from S1-08T cells.
Fig. 2: Identification of carotenoid pigments.
Fig. 3: Spectroscopic analyses of NM-R1 and NM-R3.
Fig. 4: Cryo-EM structure of NM-R1.
Fig. 5: Cryo-EM structure of NM-R3.
Fig. 6: Environmental conditions favouring the use of blue-PRs, green-PRs and antenna-containing PRs.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. The density map and structure coordinate of the cryo-EM structures of NM-R1–myxol complex, NM-R1–zeaxanthin complex, NM-R3–myxol complex and NM-R3 have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank with accession numbers EMD-61686 and 9JOV, EMD-61685 and 9JOU, EMD-61687 and 9JOW, and EMD-61688 and 9JOX, respectively. Source data are provided with this paper.

References

  1. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    PubMed  Google Scholar 

  2. Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu. Rev. Biochem. 86, 845–872 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).

    CAS  PubMed  Google Scholar 

  4. Yoshizawa, S. et al. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl Acad. Sci. USA 111, 6732–6737 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).

    PubMed  Google Scholar 

  6. Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6, 488–494 (2008).

    CAS  PubMed  Google Scholar 

  7. Gómez-Consarnau, L. et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Balashov, S. P. et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Antón, J. et al. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485–491 (2002).

    PubMed  Google Scholar 

  10. Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. USA 105, 16561–16565 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujimoto, K. J. & Hayashi, S. Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin. J. Am. Chem. Soc. 131, 14152–14153 (2009).

    CAS  PubMed  Google Scholar 

  12. Imasheva, E. S. et al. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48, 10948–10955 (2009).

    CAS  PubMed  Google Scholar 

  13. Chuon, K. et al. The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. J. Photochem. Photobiol. B 221, 112241 (2021).

    CAS  PubMed  Google Scholar 

  14. Kopejtka, K. et al. A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems. Proc. Natl Acad. Sci. USA 119, e2211018119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chazan, A. et al. Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature 615, 535–540 (2023).

    CAS  PubMed  Google Scholar 

  16. Jehlička, J., Osterrothová, K., Oren, A. & Edwards, H. G. M. Raman spectrometric discrimination of flexirubin pigments from two genera of Bacteroidetes. FEMS Microbiol. Lett. 348, 97–102 (2013).

    PubMed  Google Scholar 

  17. Chuon, K. et al. Carotenoid binding in Gloeobacteria rhodopsin provides insights into divergent evolution of xanthorhodopsin types. Commun. Biol. 5, 512 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertsova, Y. V., Arutyunyan, A. M. & Bogachev, A. V. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. Biochem. Mosc. 81, 414–419 (2016).

    CAS  Google Scholar 

  19. Oesterhelt, D., Schuhmann, L. & Gruber, H. Light‐dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an APO‐membrane. FEBS Lett. 44, 257–261 (1974).

    CAS  PubMed  Google Scholar 

  20. Imasheva, E. S., Balashov, S. P., Wang, J. M. & Lanyi, J. K. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J. Membr. Biol. 239, 95–104 (2011).

    CAS  PubMed  Google Scholar 

  21. Balashov, S. P., Imasheva, E. S. & Lanyi, J. K. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry 45, 10998–11004 (2006).

    CAS  PubMed  Google Scholar 

  22. Boichenko, V. A., Wang, J. M., Antón, J., Lanyi, J. K. & Balashov, S. P. Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim. Biophys. Acta 1757, 1649–1656 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakazawa, K. et al. Product speculation from carotenogenic gene cluster of Nonlabens spongiae genome, and identification of myxol and functional analysis of each gene. Genes 16, 202 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Miranda, M. R. M. et al. The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys. J. 96, 1471–1481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dioumaev, A. K. et al. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41, 5348–5358 (2002).

    CAS  PubMed  Google Scholar 

  26. Tsukamoto, T., Yoshizawa, S., Kikukawa, T., Demura, M. & Sudo, Y. Implications for the light-driven chloride ion transport mechanism of Nonlabens marinus rhodopsin 3 by its photochemical characteristics. J. Phys. Chem. B 121, 2027–2038 (2017).

    CAS  PubMed  Google Scholar 

  27. Balashov, S. P., Imasheva, E. S., Wang, J. M. & Lanyi, J. K. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 95, 2402–2414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirschi, S., Kalbermatter, D., Ucurum, Z., Lemmin, T. & Fotiadis, D. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat. Commun. 12, 4107 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Man, D. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 5, e77 (2007).

    PubMed  PubMed Central  Google Scholar 

  31. Tzlil, G. et al. Structural insights into light harvesting by antenna-containing rhodopsins in marine Asgard archaea. Nat. Microbiol. 10, 1484–1500 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chuon, K., Shim, J., Cho, S.-G., Song, M. & Jung, K.-H. Natural selection of carotenoid binding in Gloeobacter rhodopsin. Algal Res. 74, 103232 (2023).

    Google Scholar 

  33. Chuon, K. et al. Assembly of natively synthesized dual chromophores into functional actinorhodopsin. Front. Microbiol. 12, 652328 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Brinkmann, S., Spohn, M. S. & Schäberle, T. F. Bioactive natural products from Bacteroidetes. Nat. Prod. Rep. 39, 1045–1065 (2022).

    CAS  PubMed  Google Scholar 

  35. Shindo, K. et al. Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl. Microbiol. Biotechnol. 74, 1350–1357 (2007).

    CAS  PubMed  Google Scholar 

  36. Klassen, J. L. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS ONE 5, e11257 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Gosink, J. J., Woese, C. R. & Staley, J. T. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int. J. Syst. Bacteriol. 48, 223–235 (1998).

    PubMed  Google Scholar 

  38. Bowman, J. P. et al. Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144, 1601–1609 (1998).

    CAS  PubMed  Google Scholar 

  39. Gómez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).

    PubMed  Google Scholar 

  40. Palovaara, J. et al. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc. Natl Acad. Sci. USA 111, E3650–E3658 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gómez-Consarnau, L. et al. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8, e1000358 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. Hasegawa, M. et al. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci. Rep. 10, 16752 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasegawa-Takano, M. et al. Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria. ISME J 18, wrae175 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci. Data 9, 305 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thrash, J. C. et al. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J. 8, 1440–1451 (2014).

    PubMed  Google Scholar 

  49. Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 16, 279 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Luo, H., Thompson, L. R., Stingl, U. & Hughes, A. L. Selection maintains low genomic GC content in marine SAR11 lineages. Mol. Biol. Evol. 32, 2738–2748 (2015).

    CAS  PubMed  Google Scholar 

  51. Tsementzi, D. et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Berube, P. M. et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci. Data 5, 180154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cabello-Yeves, P. J. et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl. Environ. Microbiol. 84, e02132-17 (2018).

    PubMed  Google Scholar 

  54. Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 159 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Hiraoka, S. et al. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res. 50, 1531–1550 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Haro‐Moreno, J. M. et al. Ecogenomics of the SAR11 clade. Environ. Microbiol. 22, 1748–1763 (2020).

    PubMed  Google Scholar 

  59. Martínez-Pérez, C. et al. Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nat. Commun. 13, 117 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. Lanclos, V. C. et al. Ecophysiology and genomics of the brackish water adapted SAR11 subclade IIIa. ISME J. 17, 620–629 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zaremba-Niedzwiedzka, K. et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 14, R130 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Thompson, L. R. et al. Red Sea SAR11 and Prochlorococcus single-cell genomes reflect globally distributed pangenomes. Appl. Environ. Microbiol. 85, e00369-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252-12 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    PubMed  Google Scholar 

  65. Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J. 1, 361–371 (2007).

    CAS  PubMed  Google Scholar 

  66. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS  PubMed  Google Scholar 

  67. Oh, H.-M. et al. Complete genome sequence of strain IMCC9063, belonging to SAR11 subgroup 3, isolated from the Arctic Ocean. J. Bacteriol. 193, 3379–3380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, T., Gavelis, G. S., Brown, J. M. & Stepanauskas, R. Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton. Microbiome 12, 126 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE Int. Parallel Distrib. Process. Symp. (IPDPS) 314–324 (2019).

  72. Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS  PubMed  Google Scholar 

  74. Shimoyama, Y. COGclassifier: a tool for classifying prokaryote protein sequences into COG functional category. GitHub https://github.com/moshi4/COGclassifier (2022).

  75. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cosentino, S., Sriswasdi, S. & Iwasaki, W. SonicParanoid2: fast, accurate, and comprehensive orthology inference with machine learning and language models. Genome Biol. 25, 195 (2024).

    PubMed  PubMed Central  Google Scholar 

  77. Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS  PubMed  Google Scholar 

  80. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Google Scholar 

  83. Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol. 38, 4039–4042 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Oppenheimer, C. H. & Zobell, C. E. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. Mar. Res. 11, 10–18 (1952).

    Google Scholar 

  85. Hosaka, T. et al. Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers. Proc. Natl Acad. Sci. USA 119, e2117433119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hosaka, T. et al. Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J. Biol. Chem. 291, 17488–17495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lakowicz, J. R. (ed) Principles of Fluorescence Spectroscopy 27–61 (Springer, 2006).

  88. Inoue, K. et al. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci. Adv. 6, eaaz2441 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  90. Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).

    PubMed  Google Scholar 

  91. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS  PubMed  Google Scholar 

  92. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  93. Lebedev, A. A. et al. JLigand: a graphical tool for the CCP 4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D 77, 1282–1291 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank O. Béjà at Technion-Israel Institute of Technology for his comments on our experiments and paper. This work was supported by MEXT Advancement of Technologies for Utilization Big Data of Marine Life (grant JPMXD1521474594), JSPS KAKENHI Grants-in-Aid (grants 22KJ1110 to T.F., JP23H04404 to K.I. and 22H00557 to S.Y.), JST CREST (grant JPMJCR22N2 to K.I.), Research Support Project for Life Science and Drug Discovery (Basis for Supporting Innovative Drug Discovery and Life Science Research) from AMED (grant JP23ama121013 to M.S.), and MEXT Promotion of Development of a Joint Usage/Research System Project: Coalition of Universities for Research Excellence Program (grant JPMXP1323015482 to K.I.). All cryo-EM data in this study were collected at the cryo-EM facility of the RIKEN Center for Biosystems Dynamics Research (Yokohama, Japan).

Author information

Authors and Affiliations

Authors

Contributions

T.F. and S.Y. designed the research; T.F., M.H.-T., Y.T. and S.Y. measured absorption and emission spectra of NM-R1 and NM-R3, culturing marine Bacteroidota. T.H., T.U.-K., K.H. and M.S. performed structural analysis. Y.N., K.T., K.M. and S.N. performed bioinformatics. K.I. performed CD spectra measurements and laser-flash photolysis. S.T. and T.M. identified carotenoid pigments. T.F. and S.Y. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Keiichi Inoue, Mikako Shirouzu or Susumu Yoshizawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Sergei Balashov, Shiqiang Gao, Thomas Mock and Pu Qian for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 1H-NMR data of myxol and zeaxanthin in CDCl3

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Appendix 1, Results and Discussion.

Reporting Summary

Peer Review File

Supplementary Table 1

Cryo-EM data collection, refinement and validation statistics.

Supplementary Data

Source data for Supplementary Figs. 3–5 and 16.

Source data

Source Data Fig. 1

Rhodopsin sequences and absorption spectra of NM-R1, NM-R2 and NM-R3 with/without NmC.

Source Data Fig. 2

Chromatogram and absorption spectra of carotenoids.

Source Data Fig. 3

Differential, CD and excitation spectra of rhodopsins with/without carotenoids.

Source Data Fig. 4

PDB file of NM-R1–carotenoids complexes.

Source Data Fig. 5

PDB file of NM-R3–myxol complex.

Source Data Fig. 6

Rhodopsin amino acid sequences used for building the phylogenetic tree and rhodopsin gene transcripts at each depth.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, T., Hosaka, T., Hasegawa-Takano, M. et al. Carotenoids bind rhodopsins and act as photocycle-accelerating pigments in marine Bacteroidota. Nat Microbiol 10, 2603–2615 (2025). https://doi.org/10.1038/s41564-025-02109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02109-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing