Abstract
Microbial rhodopsins are photoreceptor proteins widely distributed in marine microorganisms that harness light energy and support marine ecosystems. While retinal is typically the sole chromophore in microbial rhodopsins, some proteorhodopsins, which are proton-pumping rhodopsins abundant in the ocean, use carotenoid antennae to transfer light energy to retinal. However, the mechanism by which carotenoids enhance rhodopsin functions remains unclear. Here, using the marine Bacteroidota isolate Nonlabens marinus S1-08T, we reconstituted complexes of rhodopsins with the carotenoid myxol and detected energy transfer to retinal in both proteorhodopsin and chloride ion-pumping rhodopsin. Carotenoid binding facilitated light harvesting and accelerated the photocycle, thereby improving the light utilization efficiency of proteorhodopsin. Cryogenic electron microscopy structural analysis further revealed the molecular architecture of the carotenoid–rhodopsin complexes. The ability to bind carotenoids is conserved in rhodopsins of the marine-dominant phylum Bacteroidota, which are widely transcribed in the photic zone. These findings reveal how carotenoids enhance rhodopsin functions in marine Bacteroidota.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
All data are available in the main text or the Supplementary Information. The density map and structure coordinate of the cryo-EM structures of NM-R1–myxol complex, NM-R1–zeaxanthin complex, NM-R3–myxol complex and NM-R3 have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank with accession numbers EMD-61686 and 9JOV, EMD-61685 and 9JOU, EMD-61687 and 9JOW, and EMD-61688 and 9JOX, respectively. Source data are provided with this paper.
References
Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).
Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu. Rev. Biochem. 86, 845–872 (2017).
Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).
Yoshizawa, S. et al. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl Acad. Sci. USA 111, 6732–6737 (2014).
Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).
Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6, 488–494 (2008).
Gómez-Consarnau, L. et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019).
Balashov, S. P. et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064 (2005).
Antón, J. et al. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485–491 (2002).
Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. USA 105, 16561–16565 (2008).
Fujimoto, K. J. & Hayashi, S. Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin. J. Am. Chem. Soc. 131, 14152–14153 (2009).
Imasheva, E. S. et al. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48, 10948–10955 (2009).
Chuon, K. et al. The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. J. Photochem. Photobiol. B 221, 112241 (2021).
Kopejtka, K. et al. A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems. Proc. Natl Acad. Sci. USA 119, e2211018119 (2022).
Chazan, A. et al. Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature 615, 535–540 (2023).
Jehlička, J., Osterrothová, K., Oren, A. & Edwards, H. G. M. Raman spectrometric discrimination of flexirubin pigments from two genera of Bacteroidetes. FEMS Microbiol. Lett. 348, 97–102 (2013).
Chuon, K. et al. Carotenoid binding in Gloeobacteria rhodopsin provides insights into divergent evolution of xanthorhodopsin types. Commun. Biol. 5, 512 (2022).
Bertsova, Y. V., Arutyunyan, A. M. & Bogachev, A. V. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. Biochem. Mosc. 81, 414–419 (2016).
Oesterhelt, D., Schuhmann, L. & Gruber, H. Light‐dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an APO‐membrane. FEBS Lett. 44, 257–261 (1974).
Imasheva, E. S., Balashov, S. P., Wang, J. M. & Lanyi, J. K. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J. Membr. Biol. 239, 95–104 (2011).
Balashov, S. P., Imasheva, E. S. & Lanyi, J. K. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry 45, 10998–11004 (2006).
Boichenko, V. A., Wang, J. M., Antón, J., Lanyi, J. K. & Balashov, S. P. Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim. Biophys. Acta 1757, 1649–1656 (2006).
Nakazawa, K. et al. Product speculation from carotenogenic gene cluster of Nonlabens spongiae genome, and identification of myxol and functional analysis of each gene. Genes 16, 202 (2025).
Miranda, M. R. M. et al. The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys. J. 96, 1471–1481 (2009).
Dioumaev, A. K. et al. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41, 5348–5358 (2002).
Tsukamoto, T., Yoshizawa, S., Kikukawa, T., Demura, M. & Sudo, Y. Implications for the light-driven chloride ion transport mechanism of Nonlabens marinus rhodopsin 3 by its photochemical characteristics. J. Phys. Chem. B 121, 2027–2038 (2017).
Balashov, S. P., Imasheva, E. S., Wang, J. M. & Lanyi, J. K. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 95, 2402–2414 (2008).
Hirschi, S., Kalbermatter, D., Ucurum, Z., Lemmin, T. & Fotiadis, D. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat. Commun. 12, 4107 (2021).
Man, D. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003).
Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 5, e77 (2007).
Tzlil, G. et al. Structural insights into light harvesting by antenna-containing rhodopsins in marine Asgard archaea. Nat. Microbiol. 10, 1484–1500 (2025).
Chuon, K., Shim, J., Cho, S.-G., Song, M. & Jung, K.-H. Natural selection of carotenoid binding in Gloeobacter rhodopsin. Algal Res. 74, 103232 (2023).
Chuon, K. et al. Assembly of natively synthesized dual chromophores into functional actinorhodopsin. Front. Microbiol. 12, 652328 (2021).
Brinkmann, S., Spohn, M. S. & Schäberle, T. F. Bioactive natural products from Bacteroidetes. Nat. Prod. Rep. 39, 1045–1065 (2022).
Shindo, K. et al. Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl. Microbiol. Biotechnol. 74, 1350–1357 (2007).
Klassen, J. L. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS ONE 5, e11257 (2010).
Gosink, J. J., Woese, C. R. & Staley, J. T. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int. J. Syst. Bacteriol. 48, 223–235 (1998).
Bowman, J. P. et al. Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144, 1601–1609 (1998).
Gómez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).
Palovaara, J. et al. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc. Natl Acad. Sci. USA 111, E3650–E3658 (2014).
Gómez-Consarnau, L. et al. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8, e1000358 (2010).
Hasegawa, M. et al. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci. Rep. 10, 16752 (2020).
Hasegawa-Takano, M. et al. Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria. ISME J 18, wrae175 (2024).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci. Data 9, 305 (2022).
Thrash, J. C. et al. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J. 8, 1440–1451 (2014).
Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 16, 279 (2015).
Luo, H., Thompson, L. R., Stingl, U. & Hughes, A. L. Selection maintains low genomic GC content in marine SAR11 lineages. Mol. Biol. Evol. 32, 2738–2748 (2015).
Tsementzi, D. et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183 (2016).
Berube, P. M. et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci. Data 5, 180154 (2018).
Cabello-Yeves, P. J. et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl. Environ. Microbiol. 84, e02132-17 (2018).
Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).
Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).
Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 159 (2019).
Hiraoka, S. et al. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res. 50, 1531–1550 (2022).
Haro‐Moreno, J. M. et al. Ecogenomics of the SAR11 clade. Environ. Microbiol. 22, 1748–1763 (2020).
Martínez-Pérez, C. et al. Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nat. Commun. 13, 117 (2022).
Lanclos, V. C. et al. Ecophysiology and genomics of the brackish water adapted SAR11 subclade IIIa. ISME J. 17, 620–629 (2023).
Zaremba-Niedzwiedzka, K. et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 14, R130 (2013).
Thompson, L. R. et al. Red Sea SAR11 and Prochlorococcus single-cell genomes reflect globally distributed pangenomes. Appl. Environ. Microbiol. 85, e00369-19 (2019).
Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252-12 (2012).
Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).
Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J. 1, 361–371 (2007).
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
Oh, H.-M. et al. Complete genome sequence of strain IMCC9063, belonging to SAR11 subgroup 3, isolated from the Arctic Ocean. J. Bacteriol. 193, 3379–3380 (2011).
Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).
Chang, T., Gavelis, G. S., Brown, J. M. & Stepanauskas, R. Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton. Microbiome 12, 126 (2024).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE Int. Parallel Distrib. Process. Symp. (IPDPS) 314–324 (2019).
Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359-16 (2017).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Shimoyama, Y. COGclassifier: a tool for classifying prokaryote protein sequences into COG functional category. GitHub https://github.com/moshi4/COGclassifier (2022).
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
Cosentino, S., Sriswasdi, S. & Iwasaki, W. SonicParanoid2: fast, accurate, and comprehensive orthology inference with machine learning and language models. Genome Biol. 25, 195 (2024).
Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol. 38, 4039–4042 (2021).
Oppenheimer, C. H. & Zobell, C. E. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. Mar. Res. 11, 10–18 (1952).
Hosaka, T. et al. Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers. Proc. Natl Acad. Sci. USA 119, e2117433119 (2022).
Hosaka, T. et al. Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J. Biol. Chem. 291, 17488–17495 (2016).
Lakowicz, J. R. (ed) Principles of Fluorescence Spectroscopy 27–61 (Springer, 2006).
Inoue, K. et al. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci. Adv. 6, eaaz2441 (2020).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
Lebedev, A. A. et al. JLigand: a graphical tool for the CCP 4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D 77, 1282–1291 (2021).
Acknowledgements
We sincerely thank O. Béjà at Technion-Israel Institute of Technology for his comments on our experiments and paper. This work was supported by MEXT Advancement of Technologies for Utilization Big Data of Marine Life (grant JPMXD1521474594), JSPS KAKENHI Grants-in-Aid (grants 22KJ1110 to T.F., JP23H04404 to K.I. and 22H00557 to S.Y.), JST CREST (grant JPMJCR22N2 to K.I.), Research Support Project for Life Science and Drug Discovery (Basis for Supporting Innovative Drug Discovery and Life Science Research) from AMED (grant JP23ama121013 to M.S.), and MEXT Promotion of Development of a Joint Usage/Research System Project: Coalition of Universities for Research Excellence Program (grant JPMXP1323015482 to K.I.). All cryo-EM data in this study were collected at the cryo-EM facility of the RIKEN Center for Biosystems Dynamics Research (Yokohama, Japan).
Author information
Authors and Affiliations
Contributions
T.F. and S.Y. designed the research; T.F., M.H.-T., Y.T. and S.Y. measured absorption and emission spectra of NM-R1 and NM-R3, culturing marine Bacteroidota. T.H., T.U.-K., K.H. and M.S. performed structural analysis. Y.N., K.T., K.M. and S.N. performed bioinformatics. K.I. performed CD spectra measurements and laser-flash photolysis. S.T. and T.M. identified carotenoid pigments. T.F. and S.Y. wrote the paper with input from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks Sergei Balashov, Shiqiang Gao, Thomas Mock and Pu Qian for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Supplementary information
Supplementary Information
Supplementary Figs. 1–16, Appendix 1, Results and Discussion.
Supplementary Table 1
Cryo-EM data collection, refinement and validation statistics.
Supplementary Data
Source data for Supplementary Figs. 3–5 and 16.
Source data
Source Data Fig. 1
Rhodopsin sequences and absorption spectra of NM-R1, NM-R2 and NM-R3 with/without NmC.
Source Data Fig. 2
Chromatogram and absorption spectra of carotenoids.
Source Data Fig. 3
Differential, CD and excitation spectra of rhodopsins with/without carotenoids.
Source Data Fig. 4
PDB file of NM-R1–carotenoids complexes.
Source Data Fig. 5
PDB file of NM-R3–myxol complex.
Source Data Fig. 6
Rhodopsin amino acid sequences used for building the phylogenetic tree and rhodopsin gene transcripts at each depth.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fujiwara, T., Hosaka, T., Hasegawa-Takano, M. et al. Carotenoids bind rhodopsins and act as photocycle-accelerating pigments in marine Bacteroidota. Nat Microbiol 10, 2603–2615 (2025). https://doi.org/10.1038/s41564-025-02109-1
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41564-025-02109-1