Extended Data Table 1 Comparison of performance between the classification models and other currently available prediction tools based on the benchmarking set or the test set

From: A generative artificial intelligence approach for the discovery of antimicrobial peptides against multidrug-resistant bacteria

Model

Type

TP

FP

TN

FN

Precision (%)

F1 Score (%)

MCC (%)

Specificity (%)

Sensitivity (%)

AMP Prediction

 AMPSorter

Transformer

632

65

1,006

93

90.67

88.89

81.66

93.93

87.17

 AMPlifyimbal

Neural Network

618

147

924

107

80.78

82.95

70.96

86.27

85.24

 Macrel

Random Forest

379

16

1,055

346

95.95

67.68

60.15

98.51

52.28

 AMPlifybal

Neural Network

523

155

916

202

77.14

74.55

58.36

85.53

72.14

 iAMP Pred

Support Vector Machines

524

149

922

201

77.86

74.96

59.16

86.09

72.28

 AMP Scanner v2

Neural Network

538

212

859

187

71.73

72.95

54.13

80.21

74.21

 Bert-Protein

Transformer

708

1,010

61

17

41.21

57.96

8.07

5.70

97.66

 AMPir

Support Vector Machines

68

110

961

657

38.20

15.06

-1.46

89.73

9.38

 AmPEP

Random Forest

357

738

333

368

32.60

39.23

-19.78

31.09

49.24

Toxin Prediction

 BioToxiPept

Transformer

329

59

336

49

84.79

85.90

72.08

85.06

87.04

 ToxinBTL

Neural Network

365

24

371

13

93.83

95.18

90.46

93.92

96.56

 ToxinpredRF

Random Forest

369

247

148

9

59.90

74.25

43.60

37.47

97.62