Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep subwavelength topological edge state in a hyperbolic medium

Abstract

Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance quality factor above 100. This finding can be directly extended to and hybridized with other van der Waals materials to broadened operational frequency ranges, streamline integration of diverse polaritonic materials, and compatibility with electronic and excitonic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device schematic and near-field measurements.
Fig. 2: Spectral and spatial near-field characterization of the edge state.
Fig. 3: Topological phase transition characterization.

Similar content being viewed by others

Data availability

The near-field raw experimental data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.11992364 (ref. 50).

References

  1. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    CAS  Google Scholar 

  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  3. von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

    Google Scholar 

  4. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980).

    CAS  Google Scholar 

  5. Kim, M., Jacob, Z. & Rho, J. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020).

    PubMed Central  Google Scholar 

  6. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    CAS  Google Scholar 

  7. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    CAS  Google Scholar 

  8. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    CAS  Google Scholar 

  9. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

    CAS  Google Scholar 

  10. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    CAS  Google Scholar 

  11. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    CAS  Google Scholar 

  12. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Google Scholar 

  13. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS  Google Scholar 

  14. Ota, Y. et al. Active topological photonics. Nanophotonics 9, 547–567 (2020).

    Google Scholar 

  15. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012).

    CAS  Google Scholar 

  16. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    CAS  Google Scholar 

  17. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    CAS  Google Scholar 

  18. Rider, M. S. et al. A perspective on topological nanophotonics: current status and future challenges. J. Appl. Phys. 125, 120901 (2019).

    Google Scholar 

  19. Lu, C.-C. et al. On-chip topological nanophotonic devices. Chip 1, 100025 (2022).

    Google Scholar 

  20. Rider, M. S. et al. Advances and prospects in topological nanoparticle photonics. ACS Photonics 9, 1483–1499 (2022).

    CAS  PubMed Central  Google Scholar 

  21. Kim, M. & Rho, J. Topological edge and corner states in a two-dimensional photonic Su–Schrieffer–Heeger lattice. Nanophotonics 9, 3227–3234 (2020).

    Google Scholar 

  22. Cox, J. D. & García de Abajo, F. J. Nonlinear graphene nanoplasmonics. Acc. Chem. Res. 52, 2536–2547 (2019).

    CAS  Google Scholar 

  23. Rostami, H., Katsnelson, M. I. & Polini, M. Theory of plasmonic effects in nonlinear optics: the case of graphene. Phys. Rev. B 95, 035416 (2017).

    Google Scholar 

  24. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    CAS  Google Scholar 

  25. Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406 (2013).

    Google Scholar 

  26. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    CAS  Google Scholar 

  27. Boroviks, S. et al. Extremely confined gap plasmon modes: when nonlocality matters. Nat. Commun. 13, 3105 (2022).

    CAS  PubMed Central  Google Scholar 

  28. Yang, Y. et al. A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576, 248–252 (2019).

    CAS  Google Scholar 

  29. Sinev, I. S. et al. Mapping plasmonic topological states at the nanoscale. Nanoscale 7, 11904–11908 (2015).

    CAS  Google Scholar 

  30. Yan, Q. et al. Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21, 9270–9278 (2021).

    CAS  Google Scholar 

  31. Moritake, Y., Ono, M. & Notomi, M. Far-field optical imaging of topological edge states in zigzag plasmonic chains. Nanophotonics 11, 2183–2189 (2022).

    Google Scholar 

  32. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    CAS  Google Scholar 

  33. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    CAS  Google Scholar 

  34. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Google Scholar 

  35. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    CAS  Google Scholar 

  36. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    CAS  PubMed Central  Google Scholar 

  37. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    CAS  Google Scholar 

  38. Dai, S. et al. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Google Scholar 

  39. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    CAS  Google Scholar 

  40. Lee, I.-H. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    CAS  PubMed Central  Google Scholar 

  41. Lee, D. et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2, 1 (2022).

    Google Scholar 

  42. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    CAS  Google Scholar 

  43. Herzig Sheinfux, H. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    CAS  Google Scholar 

  44. Sheinfux, H. H. et al. Transverse hypercrystals formed by periodically modulated phonon-polaritons. ACS Nano 17, 7377–7383 (2023).

    Google Scholar 

  45. Rappoport, T. G., Bludov, Y. V., Koppens, F. H. L. & Peres, N. M. R. Topological graphene plasmons in a plasmonic realization of the Su–Schrieffer–Heeger model. ACS Photonics 8, 1817–1823 (2021).

    CAS  Google Scholar 

  46. Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).

    Google Scholar 

  47. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  48. Richards, D., Zayats, A., Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362, 787–805 (2004).

    Google Scholar 

  49. Orsini, L., Torre, I., Herzig-Sheinfux, H. & Koppens, F. H. L. Quantitative scattering theory of near-field response for 1D polaritonic structures. Preprint at https://arxiv.org/abs/2307.11512v1 (2023).

  50. Orsini, L. Near-field experimental dataset for the Article “Deep Subwavelength Topological Edge State in a Hyperbolic Medium”. Zenodo https://doi.org/10.5281/zenodo.11992364 (2024).

Download references

Acknowledgements

F.H.L.K. acknowledges support by the ERC TOPONANOP under grant agreement no. 726001, the Gordon and Betty Moore Foundation through Grant GBMF12212, project GRAFENOG, the Government of Spain (PID2019-106875GB-100; Severo Ochoa CEX2019-000910-S (MCIN/ AEI/10.13039/501100011033), PCI2021-122020-2A and PDC2022-133844-100 funded by MCIN/AEI/10.13039/501100011033), the European Union NextGenerationEU/PRTR (PRTR-C17.I1) and EXQIRAL 101131579, Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya (CERCA, AGAUR, 2021 SGR 01443). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement no. 881603 (Graphene flagship Core3) and 820378 (Quantum flagship). This material is based upon work supported by the Air Force Office of Scientific Research under award number FA8655-23-1-7047. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force. L.O. acknowledges support by The Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, as well as the European Social Fund (L’FSE inverteix en el teu futur)—FEDER. G.M.A. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101002955 – CONQUER). S.L. acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant no. NRF-2023R1A2C1007836 and NRF-2020R1C1C1012138). J.H.E. and E.J. acknowledge the support for hBN crystals growth coming from the Office of Naval Research, award number N00014-22-1-2582. O.S. acknowledges the support of the Engineering and Physical Sciences Research Council (grant number EP/W005484). For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising. H.H.S. acknowledges funding from the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement ref. 456 843830. M.C. acknowledges the support of the ‘Presencia de la Agencia Estatal de Investigación’ within the ‘Convocatoria de tramitación anticipada, correspondente al año 2020, de las ayudas para contractos predoctorales (ref. PRE2020-XXXXXX) para la formación de doctores contemplada en el Subprograma Estatal de Fromación del Programa Estatal de Promoción del Talento y su Empleabilidad en I + D + i, en el marco del Plan Estatal de Investigacón Científica y Técnica de Innovación 2017-2020, cofinanciado por el Fondo Social Europeo’. K.S. acknowledges the support from the European Commission in the Horizon 2020 Framework Programme under grant agreement nos. 785219 (Core2) and 881603 (Core3) of the Graphene Flagship. G.S. and Y.L. acknowledge the support of the Office of Naval Research (grant no. N00014-21-1-2056), the Army Research Office (grant no. W911NF-21-1-0180) and the National Science Foundation MRSEC programme (grant no. DMR-1719875).

Author information

Authors and Affiliations

Authors

Contributions

L.O. and H.H.S. worked on sample fabrication with help from M.C. and K.S. Isotopic hBN crystals were grown by E.J. and J.H.E. Measurements and data analysis were performed by L.O. Simulations were performed by L.O. with help from Y.L. Theoretical support was provided by O.S., G.M.A., Y.L., S.L. and H.H.S. Experiments were designed by L.O., H.H.S and F.H.L.K. All authors contributed to writing the manuscript, and G.S. and F.H.L.K supervised the work.

Corresponding author

Correspondence to Frank H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Junsuk Rho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–9 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsini, L., Herzig Sheinfux, H., Li, Y. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024). https://doi.org/10.1038/s41565-024-01737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01737-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing