Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes

Abstract

Efficient cytosolic delivery is a significant hurdle when using short interfering RNA (siRNA) in therapeutic applications. Here we show that cholesterol-rich exosomes are prone to entering cancer cells through membrane fusion, achieving direct cytosolic delivery of siRNA. Molecular dynamics simulations suggest that deformation and increased contact with the target cell membrane facilitate membrane fusion. In vitro we show that cholesterol-enriched milk-derived exosomes (MEs) achieve a significantly higher gene silencing effect of siRNA, inducing superior cancer cell apoptosis compared with the native and cholesterol-depleted MEs, as well as conventional transfection agents. When administered orally or intravenously to mice bearing orthotopic or subcutaneous tumours, the cholesterol-enriched MEs/siRNA exhibit antitumour activity superior to that of lipid nanoparticles. Collectively, by modulating the cholesterol content of exosome membranes to facilitate cell entry via membrane fusion, we provide a promising approach for siRNA-based gene therapy, paving the way for effective, safe and simple gene therapy strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CGMD simulations of effects of cholesterol concentration on the interactions between exosomes and cell membranes.
Fig. 2: Characterization of MEs with varying cholesterol incorporation.
Fig. 3: MEs with varying cholesterol levels enter cells via different internalization pathways.
Fig. 4: SiPLK1-loaded MEs effectively inhibited the growth of HCT116 cells in vitro.
Fig. 5: SiPLK1-loaded MEs effectively to eradicate subcutaneous HCT116 colorectal tumour-bearing mice.
Fig. 6: SiPLK1-loaded MEs effectively to inhibit orthotopic HCT116 colorectal tumour-bearing mice.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the article and the Supplementary Information. There are no data from third-party or publicly available datasets. All data generated as part of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Hu, B. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao, J. H. & Guo, H. S. RNA silencing: from discovery and elucidation to application and perspectives. J. Integr. Plant Biol. 64, 476–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y. et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat. Nanotechnol. 18, 193–204 (2023).

    Article  PubMed  Google Scholar 

  4. Chen, X. et al. RNA interference-based therapy and its delivery systems. Cancer Metast. Rev. 37, 107–124 (2018).

    Article  CAS  Google Scholar 

  5. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, B., Park, J. H. & Sailor, M. J. Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv. Mater. 31, e1903637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang, X. et al. Oral delivery of nucleic acid therapeutics: challenges, strategies, and opportunities. Drug Discov. Today 28, 103507 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, J. et al. Sphk2 RNAi nanoparticles suppress tumor growth via downregulating cancer cell derived exosomal microRNA. J. Control. Release 286, 348–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 11, e12198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhuang, J. et al. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 6, eaaz6108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blaby-Haas, C. E. & Merchant, S. S. Lysosome-related organelles as mediators of metal homeostasis. J. Biol. Chem. 289, 28129–28136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uddin, N., Binzel, D. W., Shu, D., Fu, T.-M. & Guo, P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta. Pharm. Sin. B 13, 1383–1399 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Han, K. et al. A tumor targeted chimeric peptide for synergistic endosomal escape and therapy by dual-stage light manipulation. Adv. Funct. Mater. 25, 1248–1257 (2015).

    Article  CAS  Google Scholar 

  15. Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Miller, J. B. & Siegwart, D. J. Design of synthetic materials for intracellular delivery of RNAs: from siRNA-mediated gene silencing to CRISPR/Cas gene editing. Nano Res. 11, 5310–5337 (2018).

    Article  CAS  Google Scholar 

  18. Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1452 (2017).

    Article  Google Scholar 

  19. Zhang, Y. et al. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity against cancer. Acta. Pharm. Sin. B 13, 3518–3534 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article  Google Scholar 

  25. Tian, T. et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem. 289, 22258–22267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui, L. et al. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Mol. Biomed. 3, 29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hindi, S. M. et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell 186, 2062–2077.e17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji, X. et al. In situ cell membrane fusion for engineered tumor cells by worm-like nanocell mimics. ACS Nano 14, 7462–7474 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, P. et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 612, 546–554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho, N. T. et al. Membrane fusion and drug delivery with carbon nanotube porins. Proc. Natl Acad. Sci. USA 118, e2016974118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, Z., Li, Z., Xu, C., Guo, B. & Guo, P. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J. Control. Release 311312, 43–49 (2019).

    Article  PubMed  Google Scholar 

  32. Sanders, D. W. et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 10, e65962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, C. et al. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nat. Commun. 11, 1531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakato, M. et al. ABCA13 dysfunction associated with psychiatric disorders causes impaired cholesterol trafficking. J. Biol. Chem. 296, 100166 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Linetti, A. et al. Cholesterol reduction impairs exocytosis of synaptic vesicles. J. Cell Sci. 123, 595–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lötvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  38. Düzgüneş, N. & Nir, S. Mechanisms and kinetics of liposome-cell interactions. Adv. Drug Deliv. Rev. 40, 3–18 (1999).

    Article  Google Scholar 

  39. Kong, L., Askes, S. H. C., Bonnet, S., Kros, A. & Campbell, F. Temporal control of membrane fusion through photolabile PEGylation of liposome membranes. Angew. Chem. Int. Ed. 55, 1396–1400 (2016).

    Article  CAS  Google Scholar 

  40. Skotland, T., Hessvik, N. P., Sandvig, K. & Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 60, 9–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Arnarez, C. et al. Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 11, 260–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Samuel, M. et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun. 12, 3950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ziolkowski, W. et al. Methyl-beta-cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Lett. 584, 4606–4610 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Chabanel, A. et al. Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys. J. 44, 171–176 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, M. et al. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells. Langmuir 30, 1609–1621 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, D. W. et al. Hierarchical micro-/nanostructures from human hair for biomedical applications. Adv. Mater. 30, e1800836 (2018).

    Article  PubMed  Google Scholar 

  47. Qiu, Y. et al. Yolk-shell cationic liposomes overcome mucus and epithelial barriers for enhanced oral drug delivery. Giant 17, 100221 (2024).

    Article  CAS  Google Scholar 

  48. Wang, X. et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xue, C. et al. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun. 12, 2928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, H.-J. et al. Integrated combination treatment using a ‘smart’ chemotherapy and microRNA delivery system improves outcomes in an orthotopic colorectal cancer model. Adv. Funct. Mater. 28, 1801118 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the financial support from the National Science Fund of Distinguished Young Scholars (82025032), the National Key Research and Development Program of China (2022YFA1203200), the National Natural Science Foundation of China (82073773), the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001), the Key Research Program of Chinese Academy of Sciences (ZDBS-ZRKJZ-TLC005), the ‘Open Competition to Select the Best Candidates’ Key Technology Program for Nucleic Acid Drugs of NCTIB (NCTIB2022HS01006), the Shanghai Action Plan for Science, Technology and Innovation (23HC1401200) and the Shanghai Institute of Materia Medica, Chinese Academy of Sciences (SIMM0220232001). We thank the staff members of the Integrated Laser Microscopy System, the Electron Microscopy System, the Molecular Imaging System and the Large-scale Protein Preparation System at the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, China, for sample preparation, data collection and analysis. The MD simulations were performed on BSCC-A6 at the Beijing Super Cloud Computing Center. We are grateful to G. Li, Y. Yu, F. Gong and F. Liu for cryo-TEM data collection, cell imaging and AFM data collection, respectively.

Author information

Authors and Affiliations

Contributions

M.Y., G.H., Y.G., Y.Z. and Z.L. planned and executed the experiments, analysed the data and were involved in discussions of the data. M.Y., G.H., Y.Z., Z.L. and Z. Zhu wrote the paper. Y.Z., Z.L., Z. Zhu, J.W., X.L., Z. Zhang, C.G., B.W. and D.N. performed the experiments. All authors critically reviewed and approved the paper.

Corresponding authors

Correspondence to Yong Gan, Guoqing Hu or Miaorong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Methods, Table 1, Figs. 1–22 and References.

Reporting Summary

Supplementary Video 1

Uptake of 5%Chol/MEs in HCT116 cells.

Supplementary Video 2

Uptake of 30%Chol/MEs in HCT116 cells.

Supplementary Video 3

3D distribution of 5%Chol/MEs in HCT116 cells.

Supplementary Video 4

3D distribution of 30%Chol/MEs in HCT116 cells.

Supplementary Data 1

Uncropped and unprocessed scans for Supplementary Fig. 2.

Supplementary Data 2

Uncropped and unprocessed scans for Supplementary Fig. 4.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1a,c,e,f,i.

Source Data Fig. 2

Statistical source data for Fig. 2b,c,f,h–j.

Source Data Fig. 3

Statistical source data for Fig. 3c,e,f.

Source Data Fig. 4

Statistical source data for Fig. 4b–d,f.

Source Data Fig. 4

Unprocessed western blots for Fig. 4c.

Source Data Fig. 5

Statistical source data for Fig. 5b,c,e.

Source Data Fig. 6

Statistical source data for Fig. 6b,d,e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, Y., Luo, Z., Zhu, Z. et al. Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes. Nat. Nanotechnol. 19, 1858–1868 (2024). https://doi.org/10.1038/s41565-024-01785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01785-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research