Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Viscous terahertz photoconductivity of hydrodynamic electrons in graphene

Abstract

Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively. Here we report a qualitative deviation from the standard behaviour in doped metallic graphene. We show that Dirac electrons exposed to continuous-wave terahertz (THz) radiation can be thermally decoupled from the lattice, which activates hydrodynamic electron transport. In this regime, the resistance of graphene constrictions experiences a decrease caused by the THz-driven superballistic flow of correlated electrons. We analyse the dependencies of the negative photoresistance on the carrier density, and the radiation power, and show that our superballistic devices operate as sensitive phonon-cooled bolometers and can thus offer, in principle, a picosecond-scale response time. Beyond their fundamental implications, our findings underscore the practicality of electron hydrodynamics in designing ultra-fast THz sensors and electron thermometers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superballistic electron flow.
Fig. 2: THz-driven hydrodynamics and negative photoresistance.
Fig. 3: Power dependence and superballistic electron thermometry.

Similar content being viewed by others

Data availability

The data shown in Figs. 13 can be found on Zenodo (https://doi.org/10.5281/zenodo.12952757). The other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Aamir, M. A. et al. Ultrasensitive calorimetric measurements of the electronic heat capacity of graphene. Nano Lett. 21, 5330 (2021).

    PubMed  CAS  Google Scholar 

  2. Fong, K. C. et al. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).

    CAS  Google Scholar 

  3. Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    PubMed  CAS  Google Scholar 

  4. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Google Scholar 

  5. Kubakaddi, S. S. Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 79, 075417 (2009).

    Google Scholar 

  6. Massicotte, M., Soavi, G., Principi, A. & Tielrooij, K.-J. Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Nanoscale 13, 8376 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).

    PubMed  CAS  Google Scholar 

  8. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611 (2010).

    CAS  Google Scholar 

  9. Mittendorff, M., Winnerl, S. & Murphy, T. E. 2D THz optoelectronics. Adv. Opt. Mater. 9, 2001500 (2021).

    CAS  Google Scholar 

  10. Wallbank, J. R. et al. Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nat. Phys. 15, 32 (2019).

    CAS  Google Scholar 

  11. Shilov, A. L. et al. High-mobility compensated semimetals, orbital magnetization, and umklapp scattering in bilayer graphene moire superlattices. ACS Nano 18, 11769–11777 (2024).

    PubMed  CAS  Google Scholar 

  12. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    PubMed  Google Scholar 

  13. Kumaravadivel, P. et al. Strong magnetophonon oscillations in extra-large graphene. Nat. Commun. 10, 3334 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614 (2013).

    PubMed  CAS  Google Scholar 

  15. Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020).

    PubMed  CAS  Google Scholar 

  16. Jung, M., Rickhaus, P., Zihlmann, S., Makk, P. & Schönenberger, C. Microwave photodetection in an ultraclean suspended bilayer graphene p–n junction. Nano Lett. 16, 6988 (2016).

    PubMed  CAS  Google Scholar 

  17. Bandurin, D. A. et al. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors. Appl. Phys. Lett. 112, 141101 (2018).

    Google Scholar 

  18. Castilla, S. et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction. Nano Lett. 19, 2765 (2019).

    PubMed  CAS  Google Scholar 

  19. Titova, E. et al. Ultralow-noise terahertz detection by p–n junctions in gapped bilayer graphene. ACS Nano 17, 8223 (2023).

    PubMed  CAS  Google Scholar 

  20. Han, Q. et al. Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797 (2018).

    PubMed  CAS  Google Scholar 

  22. El Fatimy, A. et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335 (2016).

    PubMed  CAS  Google Scholar 

  23. Riccardi, E. et al. Ultrasensitive photoresponse of graphene quantum dots in the Coulomb blockade regime to THz radiation. Nano Lett. 20, 5408 (2020).

    PubMed  CAS  Google Scholar 

  24. Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Uspekhi 11, 255 (1968).

    Google Scholar 

  25. de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389 (1995).

    Google Scholar 

  26. Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    PubMed  Google Scholar 

  27. Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Charge transport and hydrodynamics in materials. Nat. Rev. Mater. 8, 726 (2023).

    CAS  Google Scholar 

  28. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058 (2016).

    PubMed  CAS  Google Scholar 

  29. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055 (2016).

    PubMed  CAS  Google Scholar 

  30. Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672 (2016).

    CAS  Google Scholar 

  32. Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162 (2019).

    PubMed  CAS  Google Scholar 

  33. Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75 (2019).

    PubMed  CAS  Google Scholar 

  34. Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537 (2020).

    PubMed  CAS  Google Scholar 

  35. Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum critical transport in clean graphene. Phys. Rev. B 78, 085416 (2008).

    Google Scholar 

  36. Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

    PubMed  Google Scholar 

  37. Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158 (2019).

    PubMed  CAS  Google Scholar 

  38. Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, A. F. Electron–hole collision limited transport in charge-neutral bilayer graphene. Nat. Phys. 13, 1207 (2017).

    CAS  Google Scholar 

  39. Tan, C. et al. Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor. Sci. Adv. 8, eabi8481 (2022).

    PubMed  PubMed Central  Google Scholar 

  40. Bandurin, D. A. et al. Interlayer electron–hole friction in tunable twisted bilayer graphene semimetal. Phys. Rev. Lett. 129, 206802 (2022).

    PubMed  CAS  Google Scholar 

  41. Block, A. et al. Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465 (1993).

    PubMed  CAS  Google Scholar 

  43. Zhao, W. et al. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 614, 688 (2023).

    PubMed  CAS  Google Scholar 

  44. Ruiz, D. B. et al. Experimental signatures of the transition from acoustic plasmon to electronic sound in graphene. Sci. Adv. 9, eadi0415 (2023).

    Google Scholar 

  45. Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182 (2017).

    CAS  Google Scholar 

  47. Waissman, J. et al. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry. Nat. Nanotechnol. 17, 166 (2022).

    PubMed  CAS  Google Scholar 

  48. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Sharvin, Y. V. On the possible method for studying Fermi surfaces. Zh. Eksperim. i Teor. Fiz. 48, 984 (1965).

    Google Scholar 

  50. Terrés, B. et al. Size quantization of Dirac fermions in graphene constrictions. Nat. Commun. 7, 11528 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).

    Google Scholar 

  52. Mylnikov, D. A. et al. Terahertz photoconductivity in bilayer graphene transistors: evidence for tunneling at gate-induced junctions. Nano Lett. 23, 220 (2023).

    PubMed  CAS  Google Scholar 

  53. Ludwig, F. et al. Terahertz detection with graphene FETs: photothermoelectric and resistive self-mixing contributions to the detector response. ACS Appl. Electron. Mater. 6, 2197 (2024).

    CAS  Google Scholar 

  54. Shein, K. et al. Fundamental limits of few-layer NbSe2 microbolometers at terahertz frequencies. Nano Lett. 24, 2282 (2024).

    PubMed  CAS  Google Scholar 

  55. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103 (2013).

    CAS  Google Scholar 

  56. Messelot, S. et al. Tamm cavity in the terahertz spectral range. ACS Photon. 7, 2906 (2020).

    CAS  Google Scholar 

  57. Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430 (2022).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research at NUS is supported by Singapore Ministry of Education Tier 2 grant award T2EP50123-0020 (photoresponse measurements) and Academic Research Fund Tier 1 (sample fabrication). M.A.K. acknowledges the support of RSF grant 22-72-00084. O.P., M.T., A.L.S., M.L. and M.A.K. were supported by internal funding programme from the Center for Neurophysics and Neuromorphic Technologies. K.S.N. is grateful to the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials, I-FIM, project number EDUNC-33-18-279-V12) and to the Royal Society (UK, grant number RSRP R 190000) for support. D.A.S. acknowledges the support from RSF grant 21-79-20225. I.G. was supported by RSF (project number 23-72-00014). A.P. acknowledges support from the European Commission under the EU Horizon 2020 MSCA-RISE-2019 programme (project 873028 HYDROTRONICS) and from the Leverhulme Trust under the grant agreements RPG-2019-363 and RPG-2023-253. We acknowledge fruitful discussions with E. Nikulin on the heat equation.

Author information

Authors and Affiliations

Authors

Contributions

D.A.B. conceived the experiment as well as designed and supervised the project. M.K., A.L.S. and A.K. performed transport and photoresistance measurements. Y.Y., M.A.K., Y.W., O.P., M.T. and D.V. fabricated devices. K.S., I.G., G.N.G. and K.S.N. provided experimental support. T.T. and K.W. grew hBN crystals. T.P., D.A.S., S.A. and A.P. provided theory support. M.L. performed the electromagnetic simulation of the antenna performance. M.K., A.L.S. and D.A.B. wrote the paper with input from all authors. All authors participated in the discussion.

Corresponding author

Correspondence to D. A. Bandurin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mengkun Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Further examples of viscous photoconductivity.

a, Differential resistance, \(\Delta {R}_{{{\rm{pc}}}}=d{V}_{{{\rm{pc}}}}/dI{| }_{I = {I}_{{{\rm{dc}}}}}-d{V}_{{{\rm{pc}}}}/dI{| }_{I = 0}\), across the PC, induced by the DC current, Idc, as a function of DC power PDC at different n, relative to its zero-bias value. b, Examples of the PC photoresistance ΔRpc vs P0 measured at different n. The positive slope of ΔRpc vs P0 at PDC > 1 μW and n = 0.5 × 1012 cm−2 suggests the presence of an additional mechanism contributing to resistance that we currently attribute to the proximity to the out-of-equilibrium Schwinger regime57. c, Calibration curves P0 vs PDC obtained by relating the resistance drop from (a) and (b). W = 0.31μm. All measurements are done at T = 2K. In the main text, PabsPDC.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravtsov, M., Shilov, A.L., Yang, Y. et al. Viscous terahertz photoconductivity of hydrodynamic electrons in graphene. Nat. Nanotechnol. 20, 51–56 (2025). https://doi.org/10.1038/s41565-024-01795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01795-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing