Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blue lasers using low-toxicity colloidal quantum dots

Abstract

Blue lasers play a pivotal role in laser-based display, printing, manufacturing, data recording and medical technologies. Colloidal quantum dots (QDs) are solution-grown materials with strong, tunable emission covering the whole visible spectrum, but the development of QD lasers has largely relied on Cd-containing red-emitting QDs, with technologically viable blue QD lasers remaining out of reach. Here we report on the realization of tunable and robust lasing using low-toxicity blue-emitting ZnSe–ZnS core–shell QDs that are compact in size yet still feature suppressed Auger recombination and long optical gain lifetime approaching 1 ns. These characteristics allow us to handle the blue QDs like laser dyes for liquid-state amplified spontaneous emission and lasing. The blue QD laser is operated under quasi-continuous-wave excitation by solid-state nanosecond lasers. A Littrow-configuration cavity enables narrow linewidth (<0.2 nm), wavelength-tunable, coherent and stable laser outputs without circulating the solution. These results indicate the promise of ZnSe–ZnS QDs to fill the ‘blue gap’ of QD lasers and to replace less stable blue laser dyes for a multitude of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of ZnSe–ZnS QDs.
Fig. 2: Femtosecond TA and optical gain of ZnSe–ZnS QDs.
Fig. 3: ASE from solution of ZnSe–ZnS QDs under femtosecond and nanosecond excitation.
Fig. 4: Tunable liquid lasing from a Littrow cavity under nanosecond excitation.
Fig. 5: Lasing directionality, coherence, polarization and stability.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information and can be obtained upon request from K.W. (kwu@dicp.ac.cn). They are also available via figshare at https://doi.org/10.6084/m9.figshare.26763205 (ref. 57). Source data are provided with this paper.

References

  1. Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    CAS  Google Scholar 

  2. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  PubMed  Google Scholar 

  3. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    CAS  PubMed  Google Scholar 

  4. Geiregat, P. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2018).

    CAS  PubMed  Google Scholar 

  5. Whitworth, G. L., Dalmases, M., Taghipour, N. & Konstantatos, G. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat. Photonics 15, 738–742 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012).

    CAS  PubMed  Google Scholar 

  8. Tanghe, I. et al. Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization. Nat. Nanotechnol. 18, 1423–1429 (2023).

    CAS  PubMed  Google Scholar 

  9. Schäfer, J. et al. Quantum dot microdrop laser. Nano Lett. 8, 1709–1712 (2008).

    PubMed  Google Scholar 

  10. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).

    CAS  Google Scholar 

  11. Kazes, M., Lewis, D. Y. & Banin, U. Method for preparation of semiconductor quantum-rod lasers in a cylindrical microcavity. Adv. Funct. Mater. 14, 957–962 (2004).

    CAS  Google Scholar 

  12. Wang, Y. et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping. Adv. Mater. 27, 169–175 (2015).

    CAS  PubMed  Google Scholar 

  13. Duarte, F. J. & Hillman, L. W. Dye Laser Principles: With Applications (Academic Press, 1990).

  14. Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nat. Photonics 5, 598–604 (2011).

    CAS  Google Scholar 

  15. Jelínková, H. Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Elsevier, 2013).

  16. Liu, Y., Li, Y., Gao, K., Zhu, J. & Wu, K. Sub-single-exciton optical gain in lead halide perovskite quantum dots revealed by exciton polarization spectroscopy. J. Am. Chem. Soc. 145, 25864–25873 (2023).

    CAS  PubMed  Google Scholar 

  17. Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Gain control in semiconductor quantum dots via state-resolved optical pumping. Phys. Rev. Lett. 102, 127404 (2009).

    PubMed  Google Scholar 

  18. Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    CAS  PubMed  Google Scholar 

  19. Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).

    CAS  PubMed  Google Scholar 

  20. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    CAS  PubMed  Google Scholar 

  21. Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).

    CAS  PubMed  Google Scholar 

  22. Kambhampati, P., Mack, T. & Jethi, L. Understanding and exploiting the interface of semiconductor nanocrystals for light emissive applications. ACS Photonics 4, 412–423 (2017).

    CAS  Google Scholar 

  23. Schäfer, F. P., Schmidt, W. & Volze, J. Organic dye solution laser. Appl. Phys. Lett. 9, 306–309 (1966).

    Google Scholar 

  24. Peterson, O. G., Tuccio, S. A. & Snavely, B. B. CW operation of an organic dye solution laser. Appl. Phys. Lett. 17, 245–247 (1970).

    CAS  Google Scholar 

  25. Soffer, B. H. & McFarland, B. B. Continuously tunable, narrow‐band organic dye lasers. Appl. Phys. Lett. 10, 266–267 (2004).

    Google Scholar 

  26. Shank, C. V. Physics of dye lasers. Rev. Mod. Phys. 47, 649–657 (1975).

    CAS  Google Scholar 

  27. Kato, K. 3547-Å pumped high-power dye laser in the blue and violet. IEEE J. Quantum Electron. 11, 373–374 (1975).

    Google Scholar 

  28. Shen, J., Wang, W. & Zhang, S. Amplification characteristics of a Coumarin 460-based tunable amplifier. IEEE Photon. J. 12, 1–8 (2020).

    Google Scholar 

  29. Azuma, K., Nakagawa, O., Segawa, Y., Aoyagi, Y. & Namba, S. A tunable picosecond UV dye laser pumped by the third harmonic of a Nd:YAG laser. Jpn J. Appl. Phys. 18, 209 (1979).

    CAS  Google Scholar 

  30. Wang, S. et al. Low-threshold amplified spontaneous emission in blue quantum dots enabled by effectively suppressing auger recombination. Adv. Opt. Mater. 9, 2100068 (2021).

    CAS  Google Scholar 

  31. Chan, Y. et al. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86, 073102 (2005).

    Google Scholar 

  32. Wang, Y., Li, X., Nalla, V., Zeng, H. & Sun, H. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, 1605088 (2017).

    Google Scholar 

  33. Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    CAS  PubMed  Google Scholar 

  34. Wang, L. et al. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett. 10, 3248–3253 (2019).

    CAS  PubMed  Google Scholar 

  35. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    CAS  PubMed  Google Scholar 

  36. Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).

    CAS  PubMed  Google Scholar 

  37. Wang, A. et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7, 2951–2959 (2015).

    CAS  PubMed  Google Scholar 

  38. Deng, X., Zhang, F., Zhang, Y. & Shen, H. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: synthesis and light-emitting applications. J. Mater. Chem. C 11, 14495–14514 (2023).

    CAS  Google Scholar 

  39. Huang, Z. et al. Broadband tunable optical gain from ecofriendly semiconductor quantum dots with near-half-exciton threshold. Nano Lett. 23, 4032–4038 (2023).

    CAS  PubMed  Google Scholar 

  40. Huang, Z. et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue–green emitters. J. Phys. Chem. Lett. 12, 11931–11938 (2021).

    CAS  PubMed  Google Scholar 

  41. Wei, H. et al. Blue lasing from heavy-metal-free colloidal quantum dots. Laser Photonics Rev. 17, 2200557 (2023).

    CAS  Google Scholar 

  42. Kozlov, O. V. et al. Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).

    CAS  PubMed  Google Scholar 

  43. Ji, B., Koley, S., Slobodkin, I., Remennik, S. & Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 20, 2387–2395 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. García-Santamaría, F. et al. Suppressed Auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    CAS  PubMed  Google Scholar 

  46. Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2009).

    Google Scholar 

  47. Long, Z. et al. The strain effects and interfacial defects of large ZnSe/ZnS core/shell nanocrystals. Small 20, 2306602 (2024).

    CAS  Google Scholar 

  48. Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).

    CAS  PubMed  Google Scholar 

  49. Rinke, M. & Güsten, H. Optische Aufheller als Laserfarbstoffe. Ber. Bunsenges. Phys. Chem. 90, 439–444 (1986).

    CAS  Google Scholar 

  50. Htoon, H., Hollingworth, J., Malko, A., Dickerson, R. & Klimov, V. Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776 (2003).

    CAS  Google Scholar 

  51. Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent device. Adv. Mater. 35, 2206613 (2023).

    CAS  Google Scholar 

  52. Casperson, L. W. Threshold characteristics of mirrorless lasers. J. Appl. Phys. 48, 256–262 (1977).

    Google Scholar 

  53. Jones, M., Nedeljkovic, J., Ellingson, R. J., Nozik, A. J. & Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 107, 11346–11352 (2003).

    CAS  Google Scholar 

  54. Hines, M. A. & Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657 (1998).

    CAS  Google Scholar 

  55. Lin, S. et al. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 13, 824–831 (2020).

    CAS  Google Scholar 

  56. Jang, E.-P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    CAS  PubMed  Google Scholar 

  57. Wu, K. Figures for “Blue laser using low-toxicity quantum dots in liquids”. figshare https://doi.org/10.6084/m9.figshare.26763205 (2024).

Download references

Acknowledgements

K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007; XDB0970303), the Dalian Institute of Chemical Physics (DICP I202246) and the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

K.W. and X. Lin conceived the idea of this study. K.W. supervised and coordinated the project. X. Li and J.D. conducted initial studies on liquid QD lasing that inspired that current project. X. Lin synthesized the QDs and measured their spectroscopy and ASE. X. Lin, Y.Y. and X. Li measured the liquid laser with help from C.X., X. Luo and D.Z. Y.L. and J.D. synthesized the large-core QDs for control experiments and the QDs for film ASE measurements. Z.W. measured the PLE of the QDs. K.W. and X. Lin wrote the paper with inputs from all authors.

Corresponding authors

Correspondence to Yang Yang or Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Pieter Geiregat and Patanjali Kambhampati for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–16 and references.

Reporting Summary

Lasing Reporting Summary

Source data

Source Data Fig. 1

Fig. 1 source data in spreadsheet.

Source Data Fig. 2

Fig. 2 source data in spreadsheet.

Source Data Fig. 3

Fig. 3 source data in spreadsheet.

Source Data Fig. 4

Fig. 4 source data in spreadsheet.

Source Data Fig. 5

Fig. 5 source data in spreadsheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Yang, Y., Li, X. et al. Blue lasers using low-toxicity colloidal quantum dots. Nat. Nanotechnol. 20, 229–236 (2025). https://doi.org/10.1038/s41565-024-01812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01812-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing