Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Full on-device manipulation of olefin metathesis for precise manufacturing

Abstract

Olefin metathesis, as a powerful metal-catalysed carbon–carbon bond-forming method, has achieved considerable progress in recent years. However, the complexity originating from multicomponent interactions has long impeded a complete mechanistic understanding of olefin metathesis, which hampers further optimization of the reaction. Here, we clarify both productive and hidden degenerate pathways of ring-closing metathesis by focusing on one individual catalyst, using a sensitive single-molecule electrical detection platform. In addition to visualizing the full pathway, we found that the conventionally unwanted degenerate pathways have an unexpected constructive coupling effect on the productive pathway, and both types of pathway can be regulated by an external electric field. We then pushed forward this ability to ring-opening metathesis polymerization involving more interactive components. With single-monomer-insertion-event resolution, precise on-device synthesis of a single polymer was achieved by online manipulation of monomer insertion dynamics, intramolecular chain transfer, stereoregularity, degree of polymerization and block copolymerization. These results offer a comprehensive mechanistic understanding of olefin metathesis, exemplifying infinite opportunities for practical precise manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of a single-catalyst junction focusing on RCM and ROMP.
Fig. 2: Electrical characterization and signal assignment for RCM at single-catalyst junctions.
Fig. 3: Manipulation of backbiting in ROMP.
Fig. 4: Stereo control of ROMP.
Fig. 5: Precise synthesis of block copolymers.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and Supplementary Information. The datasets used in Supplementary Information are available online from the Zenodo repository at https://doi.org/10.5281/zenodo.13777604. Source data are provided with this paper.

References

  1. Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    CAS  PubMed  Google Scholar 

  2. Trnka, T. M. & Grubbs, R. H. The development of L2X2RuCHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    CAS  PubMed  Google Scholar 

  3. Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).

    CAS  Google Scholar 

  4. Fürstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Ed. 39, 3012–3043 (2000).

    Google Scholar 

  5. Grubbs, R. H. & Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54, 4413–4450 (1998).

    CAS  Google Scholar 

  6. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).

    CAS  Google Scholar 

  7. Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Becker, M. R., Watson, R. B. & Schindler, C. S. Beyond olefins: new metathesis directions for synthesis. Chem. Soc. Rev. 47, 7867–7881 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hilf, S. & Kilbinger, A. F. M. Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nat. Chem. 1, 537–546 (2009).

    CAS  PubMed  Google Scholar 

  10. Mutlu, H., de Espinosa, L. M. & Meier, M. A. R. Acyclic diene metathesis: a versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev. 40, 1404–1445 (2011).

    CAS  PubMed  Google Scholar 

  11. Sinclair, F., Alkattan, M., Prunet, J. & Shaver, M. P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem. 8, 3385–3398 (2017).

    CAS  Google Scholar 

  12. Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A standard system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).

    CAS  Google Scholar 

  13. Lee, J. B., Ott, K. C. & Grubbs, R. H. Kinetics and stereochemistry of the titanacyclobutane–titanaethylene interconversion. Investigation of a degenerate olefin metathesis reaction. J. Am. Chem. Soc. 104, 7491–7496 (1982).

    CAS  Google Scholar 

  14. Tanaka, K., Tanaka, K., Takeo, H. & Matsumura, C. Intermediates for the degenerate and productive metathesis of propene elucidated by the metathesis reaction of (Z)-propene-1-d1. J. Am. Chem. Soc. 109, 2422–2425 (1987).

    CAS  Google Scholar 

  15. Stewart, I. C., Keitz, B. K., Kuhn, K. M., Thomas, R. M. & Grubbs, R. H. Nonproductive events in ring-closing metathesis using ruthenium catalysts. J. Am. Chem. Soc. 132, 8534–8535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Easter, Q. T. & Blum, S. A. Single turnover at molecular polymerization catalysts reveals spatiotemporally resolved reactions. Angew. Chem. Int. Ed. 56, 13772–13775 (2017).

    CAS  Google Scholar 

  17. Easter, Q. T. & Blum, S. A. Evidence for dynamic chemical kinetics at individual molecular ruthenium catalysts. Angew. Chem. Int. Ed. 57, 1572–1575 (2018).

    CAS  Google Scholar 

  18. Easter, Q. T., Garcia, A. I. V. & Blum, S. A. Single-polymer–particle growth kinetics with molecular catalyst speciation and single-turnover imaging. ACS Catal. 9, 3375–3383 (2019).

    CAS  Google Scholar 

  19. Liu, C. et al. Single polymer growth dynamics. Science 358, 352–355 (2017).

    CAS  PubMed  Google Scholar 

  20. Ibrahem, I., Yu, M., Schrock, R. R. & Hoveyda, A. H. Highly Z- and enantioselective ring-opening/cross-metathesis reactions catalyzed by stereogenic-at-Mo adamantylimido complexes. J. Am. Chem. Soc. 131, 3844–3845 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Flook, M. M., Jiang, A. J., Schrock, R. R., Müller, P. & Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complex. J. Am. Chem. Soc. 131, 7962–7963 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang, A. J., Zhao, Y., Schrock, R. R. & Hoveyda, A. H. Highly Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 131, 16630–16631 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature 531, 459–465 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koh, M. J. et al. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions. Nature 542, 80–85 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Torker, S., Müller, A. & Chen, P. Building stereoselectivity into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization. Angew. Chem. Int. Ed. 49, 3762–3766 (2010).

    CAS  Google Scholar 

  26. Endo, K. & Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 133, 8525–8527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Keitz, B. K., Endo, K., Herbert, M. B. & Grubbs, R. H. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J. Am. Chem. Soc. 133, 9686–9688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan, R. K. M., Torker, S. & Hoveyda, A. H. Readily accessible and easily modifiable Ru-based catalysts for efficient and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc. 135, 10258–10261 (2013).

    CAS  PubMed  Google Scholar 

  29. Khan, R. K. M., Torker, S. & Hoveyda, A. H. Reactivity and selectivity differences between catecholate and catechothiolate Ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts. J. Am. Chem. Soc. 136, 14337–14340 (2014).

    CAS  PubMed  Google Scholar 

  30. Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    CAS  PubMed  Google Scholar 

  31. Zhang, A. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 6, 266–275 (2023).

    CAS  Google Scholar 

  32. Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).

    CAS  Google Scholar 

  33. Yang, C. et al. Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023).

    CAS  PubMed  Google Scholar 

  34. Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).

    CAS  PubMed  Google Scholar 

  35. Yang, C. et al. Electric field-catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guan, J. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Guo, Y., Yang, C., Zhang, L. & Guo, X. Tunable interferometric effects between single-molecule Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 145, 6577–6584 (2023).

    CAS  PubMed  Google Scholar 

  38. Guo, Y., Yang, C., Zhou, S., Liu, Z. & Guo, X. A single-molecule memristor based on an electric-field-driven dynamical structure reconfiguration. Adv. Mater. 34, 2204827 (2022).

    CAS  Google Scholar 

  39. Chen, H. et al. Reactions in single-molecule junctions. Nat. Rev. Mater. 8, 165–185 (2023).

    Google Scholar 

  40. Dief, E. M., Low, P. J., Díez-Pérez, I. & Darwish, N. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat. Chem. 15, 600–614 (2023).

    CAS  PubMed  Google Scholar 

  41. Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).

    CAS  PubMed  Google Scholar 

  42. Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).

    CAS  PubMed  Google Scholar 

  43. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    CAS  PubMed  Google Scholar 

  44. Strogatz, S. et al. Fifty years of ‘More is different’. Nat. Rev. Phys. 4, 508–510 (2022).

    Google Scholar 

  45. Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 47, 5125–5145 (2018).

    CAS  PubMed  Google Scholar 

  46. Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    CAS  PubMed  Google Scholar 

  47. Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    CAS  PubMed  Google Scholar 

  48. Dief, E. M. & Darwish, N. SARS-CoV-2 spike proteins react with Au and Si, are electrically conductive and denature at 3 × 108 V m−1: a surface bonding and a single-protein circuit study. Chem. Sci. 14, 3428–3440 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    PubMed  Google Scholar 

  50. Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).

    CAS  PubMed  Google Scholar 

  51. Frisch, M. J. et al. Gaussian 09 (Gaussian, 2013).

  52. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    CAS  Google Scholar 

  53. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  54. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge primary financial support from the National Key R&D Program of China (2022YFE0128700 (to X.G.) and 2021YFA1200101 (to X.G.)), the National Natural Science Foundation of China (22150013 (to X.G.) and 21933001 (to X.G.)), the New Cornerstone Science Foundation through the XPLORER PRIZE (to X.G.), Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202407 (to X.G.)), the Natural Science Foundation of Beijing (2222009 (to X.G.)), ‘Frontiers Science Centre for New Organic Matter’ at Nankai University (63181206 (to X.G.)), the Taishan Scholars Program of Shandong Province (tsqn202211012 (to Y.L.)), the China National Postdoctoral Program for Innovative Talents (BX20220014 (to C.Y.)), the National Natural Science Foundation of China (22303003 (to C.Y.)), the General Project of China Postdoctoral Science Foundation (2023M730049 (to C.Y.)), the China National Postdoctoral Program for Innovative Talents (BX20230024 (to Y.G.)) and the General Project of China Postdoctoral Science Foundation (2023M740065 (to Y.G.)).

Author information

Authors and Affiliations

Contributions

X.G., Y.G. and C.Y. conceived and designed the experiments. Y.G. and C.Y. fabricated the devices and performed the device measurements. L.Z. and F.M. carried out the molecular synthesis. Y.L., Y.H., X.L. and J.H. built and analysed the computational model and performed the quantum transport calculation. X.G., F.M., Y.G., C.Y., Y.Y., K.N.H., Y.X. and C.J. analysed the data and wrote the paper. All the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Fanyang Mo, Yanwei Li, Kendall N. Houk or Xuefeng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Nadim Darwish and Bingqian Xu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Simulated potential energy profiles of different pathways in RCM.

Gibbs free energies (kcal/mol) and intermediate structures are given in the figure. Computational studies were performed with B3LYP-D3/def2TZVPP//B3LYP/ def2SVP(Ru) 6-31G(d,p)(C H O N Cl). Solvent = toluene; T = 298 K. a. Potential energy profile of the productive pathway. b. Potential energy profile of the degenerate pathway (a). c. Potential energy profile of the degenerate pathway (b). d. Potential energy profile of the degenerate pathway (c). Abbreviations: RS, reactant state; TS, transition state; IM, intermediate; PS, productive state; D, degenerate; a, metathesis pathway (a); b, metathesis pathway (b); c, metathesis pathway (c); t, trans; c, cis. RS = complex 1 + substrate; IM1 = complex 2; IM2 = complex 3; IM3 = complex 4; PS = complex 1 + product; D-a-IM = complex 5; D-b-IM-t = complex 6; D-b-IM-c = complex 7; PS-t = complex 1 + trans-product; PS-c = complex 1 + cis-product.

Extended Data Fig. 2 Statistical dynamic information of ROMP.

a. Dwell time of Ru-based alkylidene (solid line) and metallacyclobutane (dash line) in bias voltage-dependent measurements of ROMP using COE (blue line) and NBE (green line). Abbreviations: alk = alkylidene; mcb = metallacyclobutane. The error scales were derived from the statistics of three different devices (n = 3). Data are presented as mean ± s.d. τmcb was longer than τalk in the polymerization of COE (for example, at VSD = 0.1 V and COE concentration = \(1\times {10}^{-4}\) mol L−1, τmcb = 3202.6 ± 182.5 ms, τalk = 906.5 ± 10.4 ms), indicating that the ring-opening process of metallacyclobutane is the rate-determining step (RDS). As for NBE, the RDS is the formation of metallacyclobutane (for example, at VSD = 0.1 V and NBE concentration = \(1\times {10}^{-4}\) mol L−1, τmcb = 146.8 ± 3.8 ms, τalk = 468.0 ± 5.2 ms), which is consistent with the high ring strain energy of NBE. b. Polymerization rates in bias voltage-dependent measurements of ROMP using COE (blue bar) and NBE (green bar), demonstrating the high activity of NBE as the monomer in ROMP. The error scales were derived from the statistics of three different devices (n = 3). Data are presented as mean ± s.d.

Source data

Extended Data Fig. 3 Statistics of recorded photons of the polymer chain with different numbers of f-COE.

a. Schematic of the polymer chain with the segment sequence of COE(n = 20) → f-COE(n = 1) → COE(n = 20) → f-COE(n = 1) → …. b. For 20 different devices, recorded photon numbers of the polymer chain with different numbers of f-COE (1−4). For each device, the error scales were derived from the statistics of 3 independent tests (n = 3). Data are presented as mean ± s.d.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Discussion, Schemes 1 and 2 and Table 1.

Supplementary Video 1

Real-time optical monitoring of the trajectory of the polymer chain terminus (that is, the fluorescent polystyrene bead) in the polymerization process. A 405 nm, 5 mW laser was focused on the graphene device through a ×100 oil lens and 5,000 photos taken with an exposure time of 50 ms. The bright pixels refer to the real-time location of the fluorescent polystyrene bead.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Yang, C., Zhang, L. et al. Full on-device manipulation of olefin metathesis for precise manufacturing. Nat. Nanotechnol. 20, 246–254 (2025). https://doi.org/10.1038/s41565-024-01814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01814-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing