Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity

Abstract

The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides. These actuate by releasing a reporter if and only if cleaved by a specific pair of proteases. AND-gated nanosensors that detect the concomitant activity of the granzyme B protease secreted by CD8 T cells and matrix metalloproteinases overexpressed by cancer cells identify the unique condition of cytotoxic T cell killing of tumour cells. In preclinical mouse models, AND-gated nanosensors discriminate tumours that are responsive to immune checkpoint blockade therapy from B2m–/– tumours that are resistant to it, minimize signals from tissues without co-localized protease expression including the lungs during acute influenza infection, and release a reporter locally in tissue or distally in the urine for facile detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric bi-labile cyclic peptide nanosensors implement AND-gate logic.
Fig. 2: Multivalent presentation of AND-gated peptides improves proteolysis kinetics.
Fig. 3: AND-gated nanosensors selectively report on T cell killing of cancer cells.
Fig. 4: AND-gated nanosensors detect anti-tumour responses during ICBT.
Fig. 5: AND-gated nanosensors increase specificity by requiring co-localized proteases for activation.
Fig. 6: AND-gated nanosensors increase selectivity of on-tumour detection.

Similar content being viewed by others

Data availability

The source data underlying the main text figures (Figs. 16) and Supplementary figures are provided as source data files. All raw data and calculations used to generate plotted data are provided with this paper in the source data files. Image source data for Supplementary figures are provided at the end of the Supplementary Information file. Source data are provided with this paper.

References

  1. Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

    PubMed Central  PubMed  Google Scholar 

  2. Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).

    CAS  PubMed  Google Scholar 

  3. Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).

    CAS  PubMed  Google Scholar 

  4. Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra283 (2015).

    Google Scholar 

  5. Chang, H.-J. et al. Programmable receptors enable bacterial biosensors to detect pathological biomarkers in clinical samples. Nat. Commun. 12, 5216 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra284–289ra284 (2015).

    Google Scholar 

  8. Panteli, J. T., Van Dessel, N. & Forbes, N. S. Detection of tumors with fluoromarker-releasing bacteria. Int. J. Cancer 146, 137–149 (2020).

    CAS  PubMed  Google Scholar 

  9. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e1411 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013).

    PubMed Central  PubMed  Google Scholar 

  12. Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2023).

    CAS  PubMed  Google Scholar 

  13. Kawasaki, S., Fujita, Y., Nagaike, T., Tomita, K. & Saito, H. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res. 45, e117–e117 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Wagner, T. E. et al. Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nat. Chem. Biol. 14, 1043–1050 (2018).

    CAS  PubMed  Google Scholar 

  15. Mc Cafferty, S. et al. In vivo validation of a reversible small molecule-based switch for synthetic self-amplifying mRNA regulation. Mol. Ther. 29, 1164–1173 (2021).

    Google Scholar 

  16. Vlahos, A. E. et al. Protease-controlled secretion and display of intercellular signals. Nat. Commun. 13, 912 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang, X. et al. A programmable protease-based protein secretion platform for therapeutic applications. Nat. Chem. Biol. 20, 432–442 (2023).

    CAS  PubMed  Google Scholar 

  18. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen, Z. et al. De novo design of protein logic gates. Science 368, 78 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Holt, B. A. & Kwong, G. A. Protease circuits for processing biological information. Nat. Commun. 11, 5021 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Holt, B. A. et al. Dimensionless parameter predicts bacterial prodrug success. Mol. Syst. Biol. 18, e10495 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Widen, J. C. et al. AND-gate contrast agents for enhanced fluorescence-guided surgery. Nat. Biomed. Eng. 5, 264–277 (2021).

    CAS  PubMed  Google Scholar 

  23. Holt, B. A. et al. Embracing enzyme promiscuity with activity-based compressed biosensing. Cell Rep. Methods 3, 100372 (2023).

    CAS  PubMed  Google Scholar 

  24. Zhuang, Q., Holt, B. A., Kwong, G. A. & Qiu, P. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering. PLoS Comput. Biol. 15, e1006909 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat. Biomed. Eng. 3, 281–291 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Mac, Q. D. et al. Urinary detection of early responses to checkpoint blockade and of resistance to it via protease-cleaved antibody-conjugated sensors. Nat. Biomed. Eng. 6, 310–324 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Werle, M. & Bernkop-Schnurch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30, 351–367 (2006).

    CAS  PubMed  Google Scholar 

  28. Diao, L. & Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet. 52, 855–868 (2013).

    CAS  PubMed  Google Scholar 

  29. Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011).

    CAS  PubMed  Google Scholar 

  30. Kwong, G. A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70 (2013).

    CAS  PubMed  Google Scholar 

  31. Dall, E. & Brandstetter, H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc. Natl Acad. Sci. USA 110, 10940–10945 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Aggarwal, S. et al. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 47, 1076–1086 (2008).

    CAS  PubMed  Google Scholar 

  33. Joo, S. H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) 20, 19–26 (2012).

    CAS  PubMed  Google Scholar 

  34. Nielsen, D. S. et al. Orally absorbed cyclic peptides. Chem. Rev. 117, 8094–8128 (2017).

    CAS  PubMed  Google Scholar 

  35. McKay, C. S. & Finn, M. G. Polyvalent catalysts operating on polyvalent substrates: a model for surface-controlled reactivity. Angew. Chem. Int. Ed. 55, 12643–12649 (2016).

    CAS  Google Scholar 

  36. Algar, W. R. et al. Proteolytic activity at quantum dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial “hopping”. Nano Lett. 12, 3793–3802 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed Central  PubMed  Google Scholar 

  38. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Yap, T. A. et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 11, 1368–1397 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Nguyen, A. et al. Granzyme B nanoreporter for early monitoring of tumor response to immunotherapy. Sci. Adv. 6, eabc2777 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhao, N. et al. In vivo measurement of granzyme proteolysis from activated immune cells with PET. ACS Cent. Sci. 7, 1638–1649 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    CAS  PubMed  Google Scholar 

  45. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Smith, B. L. et al. Feasibility study of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast cancer in breast conserving surgery. Ann. Surg. Oncol. 27, 1854–1861 (2020).

    PubMed Central  PubMed  Google Scholar 

  47. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra324 (2016).

    Google Scholar 

  48. Steinkamp, P. J. et al. A standardized framework for fluorescence-guided margin assessment for head and neck cancer using a tumor acidosis sensitive optical imaging agent. Mol. Imaging Biol. 23, 809–817 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a natural born killer. Immunol. Rev. 193, 31–38 (2003).

    CAS  PubMed  Google Scholar 

  50. Trapani, J. A. & Sutton, V. R. Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr. Opin. Immunol. 15, 533–543 (2003).

    CAS  PubMed  Google Scholar 

  51. Sun, Q. et al. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct. Target. Ther. 8, 320 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 12, 738 (2020).

    CAS  PubMed  Google Scholar 

  53. Tune, B. X. J. et al. Matrix metalloproteinases in chemoresistance: regulatory roles, molecular interactions, and potential inhibitors. J. Oncol. 2022, 3249766 (2022).

    PubMed Central  PubMed  Google Scholar 

  54. Vyas, D., Laput, G. & Vyas, A. K. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther. 7, 1015–1023 (2014).

    Google Scholar 

  55. Goodwin, R. A. & Asmis, T. R. Overview of systemic therapy for colorectal cancer. Clin. Colon Rectal Surg. 22, 251–256 (2009).

    PubMed Central  PubMed  Google Scholar 

  56. Zhang, X. et al. Hepatitis B virus reactivation in cancer patients with positive hepatitis B surface antigen undergoing PD-1 inhibition. J. Immunother. Cancer 7, 322 (2019).

    PubMed Central  PubMed  Google Scholar 

  57. Hutchinson, J. A. et al. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat. Commun. 12, 1439 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    CAS  PubMed  Google Scholar 

  59. Kyi, C., Hellmann, M. D., Wolchok, J. D., Chapman, P. B. & Postow, M. A. Opportunistic infections in patients treated with immunotherapy for cancer. J. Immunother. Cancer 2, 19 (2014).

    PubMed Central  PubMed  Google Scholar 

  60. Del Castillo, M. et al. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 63, 1490–1493 (2016).

    PubMed Central  PubMed  Google Scholar 

  61. Zhu, I. et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443.e1416 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    CAS  PubMed  Google Scholar 

  63. Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    CAS  PubMed  Google Scholar 

  64. Su, F.-Y. et al. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. Sci. Adv. 8, eabm7950 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Fridman, W. H., Zitvogel, L., Sautès–Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  PubMed  Google Scholar 

  68. He, S., Cheng, P. & Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).

    CAS  PubMed  Google Scholar 

  69. Kratochwil, C. et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 60, 801–805 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Galluzzi, L., Guilbaud, E., Schmidt, D., Kroemer, G. & Marincola, F. M. Targeting immunogenic cell stress and death for cancer therapy. Nat. Rev. Drug Discov. 23, 445–460 (2024).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    CAS  PubMed  Google Scholar 

  72. Park, J.-H. et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20, 1630–1635 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by National Institutes of Health (NIH) grants 5U01CA265711 (G.A.K., P.Q. and M.G.F.), 5R01CA237210 (G.A.K.), 1DP2HD091793 (G.A.K.) and 5DP1CA280832 (G.A.K.). The authors were supported by the National Science Foundation (NSF) Graduate Research Fellowships Program (grant DGE-2039655, A.S. and A.D.S.T.) and the National Institutes of Health Cell and Tissue Engineering Training Program T32GM145735 (A.D.S.T.). This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-1542174). This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank the staff at Georgia Tech’s Systems Mass Spectrometry Core, Cellular Analysis and Cytometry Core, Organic Materials Characterization Laboratory and Department of Animal Resources for their assistance in performing our studies.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and G.A.K. conceived the idea. A.S., H.P., Q.D.M., M.X., P.Q., M.G.F. and G.A.K. designed the experiments and interpreted the results. A.S., H.P., H.R., L.C.R., A.D.S.T., S.S.B., R.H., Z.L., S.V. and I.L. synthesized the materials and carried out the experiments. A.S. and G.A.K. wrote the paper.

Corresponding author

Correspondence to Gabriel A. Kwong.

Ethics declarations

Competing interests

G.A.K. is an equity shareholder of, and consults for, Sunbird Bio and Port Therapeutics. This study could affect his personal financial status. The terms of this arrangement have been reviewed and approved by Georgia Tech in accordance with its conflict-of-interest policies. A.S., Q.D.M. and G.A.K. are listed as inventors on patent application (PCT/US2020/030132) pertaining to the results of the paper. The patent applicant is the Georgia Tech Research Corporation. The patent is published (WO2020191416A3). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30 (including image source data for Supplementary figures) and Table 1.

Reporting Summary

Supplementary Data 1

Numerical source data for Supplementary Figs. 2–4, 6–10 and 12–22.

Source data

Source Data Fig. 1

Numerical source data.

Source Data Fig. 2

Numerical source data.

Source Data Fig. 3

Numerical source data.

Source Data Fig. 4

Numerical source data.

Source Data Fig. 4

Image source data.

Source Data Fig. 5

Numerical source data.

Source Data Fig. 5

Image source data.

Source Data Fig. 6

Numerical source data.

Source Data Fig. 6

Image source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Phuengkham, H., Rajesh, H. et al. AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity. Nat. Nanotechnol. 20, 441–450 (2025). https://doi.org/10.1038/s41565-024-01834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01834-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing