Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy

Abstract

Pyroptosis has emerged as a promising approach for cancer immunotherapy. However, current pyroptosis inducers lack specificity for cancer cells and have a weak antitumour immune response. Here we report a tumour-specific nanoparticle (NP-NH-D5) that activates pyroptosis by disrupting lysosomes for cancer immunotherapy. NP-NH-D5 undergoes negative-to-positive charge reversal and nanoparticle-to-nanofibre transformation within tumour cell lysosomes through tandem response to extracellular matrix metallopeptidase-2 and intracellular reducing agents. The as-formed non-peptide nanofibres efficiently break the lysosomes and trigger gasdermin-D-mediated pyroptosis, leading to strong immunogenic cell death and alleviation of the immunosuppressive tumour microenvironment. In vivo, NP-NH-D5 inhibits orthotopic 4T1 breast tumours, prevents metastasis and recurrence, and prolongs survival without systemic side effects. Furthermore, it greatly enhances the effectiveness of PD-L1 antibody immunotherapy in the 4T1 late-stage lung metastasis and aggressive orthotopic Pan02 pancreatic tumour models. Our research may open pathways for developing stimuli-responsive pyroptosis inducers for precise cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of NP-NH-D5 to induce pyroptosis and an antitumour immune response.
Fig. 2: Characterization of F-C6-NH2 self-assembly into NFs.
Fig. 3: Characterization of NP-NH-D5 in vitro and in culture cells.
Fig. 4: NP-NH-D5 elicited robust antitumour immunity in orthotopic 4T1 tumour-bearing mice.
Fig. 5: NP-NH-D5 combined with anti-PD-L1 effectively eradicated late-stage 4T1 lung metastases.
Fig. 6: NP-NH-D5 synergized with anti-PD-L1 to effectively inhibit orthotopic Pan02 pancreatic tumours.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available within the paper and the Supplementary Information. Other raw and relevant data from the study are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 43–157 (2020).

    Article  Google Scholar 

  2. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Q. et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, B. et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 28, 1171–1185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Li, F. et al. mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy. Nat. Commun. 14, 4223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ploetz, E. et al. Metal–organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 32, 1907267 (2020).

    Article  CAS  Google Scholar 

  9. Ngai, W. S. C. et al. Bioorthogonally activatable base editing for on-demand pyroptosis. J. Am. Chem. Soc. 144, 5411–5417 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Li, M. et al. Photoredox catalysis may be a general mechanism in photodynamic therapy. Proc. Natl Acad. Sci. USA 119, e2210504 (2022).

    Google Scholar 

  11. Yu, L. et al. Photocatalytic superoxide radical generator that induces pyroptosis in cancer cells. J. Am. Chem. Soc. 144, 11326–11337 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, B. et al. A pyroptosis nanotuner for cancer therapy. Nat. Nanotechnol. 17, 788–798 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Su, X. et al. Disruption of zinc homeostasis by a novel platinum(IV)-terthiophene complex for antitumor immunity. Angew. Chem. Int. Ed. 135, e202216917 (2022).

    Article  Google Scholar 

  14. Zhang, W. et al. Bioorthogonal disruption of pyroptosis checkpoint for high-efficiency pyroptosis cancer therapy. J. Am. Chem. Soc. 145, 16658–16668 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X. et al. Apoptosis-amplified assembly of porphyrin nanofiber enhances photodynamic therapy of oral tumor. J. Am. Chem. Soc. 145, 7918–7930 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Li, M. et al. Photon-controlled pyroptosis activation (PhotoPyro): an emerging trigger for antitumor immune response. J. Am. Chem. Soc. 145, 6007–6023 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Chauhan, V. & Jain, R. Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Tu, Y. et al. Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem. Rev. 116, 2023–2078 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Cademartiri, L. & Bishop, K. Programmable self-assembly. Nat. Mater. 14, 2–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y., Hu, Y. & Ye, D. Activatable multimodal probes for in vivo imaging and theranostics. Angew. Chem. Int. Ed. 61, e202209512 (2022).

    Article  CAS  Google Scholar 

  22. Chagri, S., Ng, D. Y. W. & Weil, T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem. 6, 320–338 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim, J. et al. In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 8, 710–725 (2023).

    Article  Google Scholar 

  24. Liang, G., Ren, H. & Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2, 54–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y. et al. Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat. Mater. 11, 817–826 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Jeena, M. T. et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 8, 26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan, R. et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc. 141, 10331–10341 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Feng, Z. et al. Enzyme-instructed peptide assemblies selectively inhibit bone tumors. Chem. 5, 2442–2449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, J. et al. New power of self-assembling carbonic anhydrase inhibitor: short peptide–constructed nanofibers inspire hypoxic cancer therapy. Sci. Adv. 5, eaax0937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. An, H. et al. A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging. Nat. Commun. 10, 4861 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gong, N. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 15, 1053–1064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pieszka, M. et al. Controlled supramolecular assembly inside living cells by sequential multistaged chemical reactions. J. Am. Chem. Soc. 142, 15780–15789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, L. et al. Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nat. Nanotechnol. 15, 145–153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borkowska, M. et al. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol. 15, 331–341 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. He, H., Liu, S., Wu, D. & Xu, B. Enzymatically formed peptide assemblies sequestrate proteins and relocate inhibitors to selectively kill cancer cells. Angew. Chem. Int. Ed. 59, 16445 (2020).

    Article  CAS  Google Scholar 

  36. Song, Y. et al. Self-amplifying assembly of peptides in macrophages for enhanced inflammatory treatment. J. Am. Chem. Soc. 144, 6907–6917 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Wen, X. et al. Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat. Commun. 14, 800 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, J. et al. Hierarchical assembly of intrinsically disordered short peptides. Chem 9, 2530–2546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji, S. et al. Targeted enrichment of enzyme-instructed assemblies in cancer cell lysosomes turns immunologically cold tumors hot. Angew. Chem. Int. Ed. 60, 26994 (2021).

    Article  CAS  Google Scholar 

  40. Li, W. et al. Molecular engineering of pH-responsive NIR oxazine assemblies for evoking tumor ferroptosis via triggering lysosomal dysfunction. J. Am. Chem. Soc. 145, 3736–3747 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, S. et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis. 11, 817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iulianna, T., Kuldeep, N. & Eric, F. The Achilles’ heel of cancer: targeting tumors via lysosome-induced immunogenic cell death. Cell Death Dis. 13, 509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, J. et al. Intracellular condensates of oligopeptide for targeting lysosome and addressing multiple drug resistance of cancer. Adv. Mater. 34, 2104704 (2022).

    Article  CAS  Google Scholar 

  44. Wu, C. et al. Lysosome-targeted and fluorescence-turned ‘on’ cytotoxicity induced by alkaline phosphatase-triggered self-assembly. Adv. Healthc. Mater. 11, 2101346 (2022).

    Article  CAS  Google Scholar 

  45. Jana, B. et al. Intra-lysosomal peptide assembly for the high selectivity index against cancer. J. Am. Chem. Soc. 145, 18414–18431 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Peng, J. et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9, 122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Gamcsik, M. P., Kasibhatla, M. S., Teeter, S. D. & Colvin, O. M. Glutathione levels in human tumors. Biomarkers. 17, 671–691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie, Z. et al. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis. 14, 255 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bertheloot, D., Latz, E. & Franklin, B. S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol. Immunol. 18, 1106–1121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martens, S. et al. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ. 28, 1757–1772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, Y. et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bussi, C. et al. Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism. Nat. Commun. 13, 7338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Curiel, T. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA0910003, 2020YFA0713801), the National Natural Science Foundation of China (22137003, 22274074), the Natural Science Foundation of Jiangsu Province (BK20232020), the State Key Laboratory of Analytical Chemistry for Life Science (5431ZZXM2408) and the Excellent Research Program of Nanjing University (ZYJH004).

Author information

Authors and Affiliations

Contributions

D.Y. and Junya Zhang conceived the research plan. Junya Zhang and Y.H. synthesized the probes. X.W. established the tumour model. Z.Y. performed the AFM analysis. Z.W. and Z.Y. analysed the AFM data. H.B. and Junya Zhang performed the TEM analysis. Z.F. and Junya Zhang performed the CRISPR–Cas9-mediated knockout experiments. Junya Zhang, Q.X. and T.T. performed the flow cytometric analysis. Junya Zhang and Y.M. performed the in vivo experiments. L.Q. performed the molecular simulation. Junya Zhang, J.L., P.Z., Jingjing Zhang., J.-J.X. and D.Y. analysed the data. Junya Zhang. and D.Y. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Deju Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yuan Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–147, Tables 1–7, Materials and Instruments, Methods and References.

Reporting Summary

Supplementary Data

Source data for quantitative data of western blots.

Source data

Source Data Fig. 2

All numerical source data for statistical analysis, unmodified gels and images.

Source Data Fig. 3

All numerical source data for statistical analysis, unmodified gels and images.

Source Data Fig. 4

All numerical source data for statistical analysis, unmodified gels and images.

Source Data Fig. 5

All numerical source data for statistical analysis, unmodified gels and images.

Source Data Fig. 6

All numerical source data for statistical analysis, unmodified gels and images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, Y., Wen, X. et al. Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy. Nat. Nanotechnol. 20, 563–574 (2025). https://doi.org/10.1038/s41565-025-01857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01857-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research