Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-torque-driven gigahertz magnetization dynamics in the non-collinear antiferromagnet Mn3Sn

Subjects

Abstract

Non-collinear antiferromagnets, such as Mn3Sn, stand out for their topological properties and potential in antiferromagnetic spintronics. This emerging field aims at harnessing ultrafast magnetization dynamics of antiferromagnets through spin torques. Here we report the time-resolved dynamics of Mn3Sn on a picosecond timescale, driven by an optically induced spin current pulse. Our results reveal that the magnetization of Mn3Sn tilts immediately after the spin current pulse and subsequently undergoes 70 GHz precession. This immediate tilting underscores the predominant role of damping-like torque stemming from spin current absorption by Mn3Sn. We also determine the spin coherence length of Mn3Sn to be approximately 15 nm. This value substantially exceeds that of ferromagnets, highlighting a distinct spin-dephasing process in non-collinear antiferromagnets. Our results hold promise for ultrafast applications of non-collinear antiferromagnets and enrich our understanding of their spin-transfer physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural properties of Pt/Mn3Sn samples.
Fig. 2: Static MOKE and in-plane magnetization measurement.
Fig. 3: TR-MOKE measurement of the spin-torque-driven dynamics.
Fig. 4: Spin dynamics of Mn3Sn.
Fig. 5: Thickness dependence of the spin-torque magnitude.

Similar content being viewed by others

Data availability

All other data supporting the findings of this study are available from the corresponding authors. Source data are provided with this paper.

References

  1. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  3. Kimel, A., Kirilyuk, A., Tsvetkov, A., Pisarev, R. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    Article  CAS  Google Scholar 

  5. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article  CAS  Google Scholar 

  6. Kimel, A. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  CAS  Google Scholar 

  8. Kang, K., Lee, W.-B., Lee, D.-K., Lee, K.-J. & Choi, G.-M. Magnetization dynamics of antiferromagnetic metals of PtMn and IrMn driven by a pulsed spin-transfer torque. Appl. Phys. Lett. 118, 252407 (2021).

    Article  CAS  Google Scholar 

  9. Miwa, S. et al. Giant effective damping of octupole oscillation in an antiferromagnetic Weyl semimetal. Small Sci. 1, 2000062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Study of the magnetic phase transformation in the Mn3Sn phase. Physica B+C 80, 226–230 (1975).

    Article  Google Scholar 

  11. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).

    Article  CAS  Google Scholar 

  12. Brown, P., Nunez, V., Tasset, F., Forsyth, J. & Radhakrishna, P. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J. Phys. Condens. Matter 2, 9409 (1990).

    Article  CAS  Google Scholar 

  13. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    Article  Google Scholar 

  14. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article  Google Scholar 

  15. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  CAS  Google Scholar 

  17. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article  CAS  Google Scholar 

  20. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106–1113 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    Article  CAS  Google Scholar 

  25. Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, S., Levy, P. & Fert, A. Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kovalev, A. A., Bauer, G. E. & Brataas, A. Perpendicular spin valves with ultrathin ferromagnetic layers: magnetoelectronic circuit investigation of finite-size effects. Phys. Rev. B 73, 054407 (2006).

    Article  Google Scholar 

  28. Núnez, A. S., Duine, R., Haney, P. & MacDonald, A. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  Google Scholar 

  29. MacDonald, A. & Tsoi, M. Antiferromagnetic metal spintronics. Philos. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  CAS  Google Scholar 

  30. Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Lim, Y. et al. Dephasing of transverse spin current in ferrimagnetic alloys. Phys. Rev. B 103, 024443 (2021).

    Article  CAS  Google Scholar 

  32. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Article  Google Scholar 

  33. Choi, G.-M. et al. Optical spin–orbit torque in heavy metal-ferromagnet heterostructures. Nat. Commun. 11, 1482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng, Y., Yu, S., Zhu, M., Hwang, J. & Yang, F. Tunable topological Hall effects in noncollinear antiferromagnet Mn3Sn/Pt bilayers. APL Mater. 9, 051121 (2021).

    Article  CAS  Google Scholar 

  35. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article  PubMed  Google Scholar 

  36. Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).

    Article  CAS  Google Scholar 

  37. Shukla, A. & Rakheja, S. Spin-torque-driven terahertz auto-oscillations in noncollinear coplanar antiferromagnets. Phys. Rev. Appl. 17, 034037 (2022).

    Article  CAS  Google Scholar 

  38. Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).

    Article  Google Scholar 

  39. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical puses. Nat. Electron. 3, 680–686 (2020).

    Article  Google Scholar 

  41. Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.-M.C. was supported by the National Foundation of Korea (2022R1A2C1006504 and RS-2024-00410027). Device fabrication was supported by Advanced Facility Center for Quantum Technology at Sungkyunkwan University. K.-J.L acknowledges financial support from the National Foundation of Korea (2020R1A2C3013302, 2022M3H4A1A04096339 and 2022M3I7A2079267) and Samsung Electronics. B.-G.P. was supported by the National Foundation of Korea (2022R1A4A1031349).

Author information

Authors and Affiliations

Authors

Contributions

G.-M.C. and K.-J.L. supervised the study. W.-B.L. fabricated samples and performed the optical measurement and analysis with the help of G.-M.C. and B.-G.P. H.-W.K. and S.H. carried out theoretical calculations for spin coherence length with the help of K.-J.L. W.-B.L., K.-J.L. and G.-M.C. wrote the paper.

Corresponding authors

Correspondence to Kyung-Jin Lee or Gyung-Min Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cross-sectional STEM images and EDS mapping of the samples.

a, b, STEM image of a Pt(5)/Mn3Sn(10), and b Pt(5)/Mn3Sn(20) samples. c, d, EDS mapping image of c Pt(5)/Mn3Sn(10), and d Pt(5)/Mn3Sn(20) samples. The composition ratios of 10 nm, 20nm-thick Mn3Sn samples are Mn3.07Sn0.93, and Mn3.08Sn0.92, respectively.

Extended Data Fig. 2 Roughness measurements of Pt/Mn3Sn samples.

a-c X-ray reflectometry (XRR) scans of a Pt(5)/Mn3Sn(5), b Pt(5)/Mn3Sn(10), and c Pt(5)/Mn3Sn(15) samples. d Roughness of Pt/Mn3Sn samples obtained from the atomic force microscopy (AFM), and XRR scans. AFM data points are represented as mean value ± standard deviation of the five times repeated measurements.

Source data

Extended Data Fig. 3 Electrical properties of Pt/Mn3Sn samples.

a, Resistivity R, and b, dR/dT of Pt(5)/Mn3Sn(5), Pt(5)/Mn3Sn(10), and Pt(5)/Mn3Sn(15) samples as a function of temperature T from 6 K to 325 K. These results support that the electrical properties of Mn3Sn do not exhibit a noticeable thickness dependence.

Source data

Extended Data Fig. 4 Static longitudinal MOKE measurement of Mn3Sn and Co.

a, Static longitudinal MOKE measurement setup with a lens. The laser is incident parallel to the x-axis but offset by 2 mm from the center of the lens. Then, the laser is focused on the sample with a fixed oblique angle of 20°, determined by the numerical aperture of the lens. b, Static Kerr rotation of Pt/Mn3Sn samples according to the external magnetic field. c,d Static Kerr rotation of c Mn3Sn and d Co as a function of thickness. Data points of c,d are represented as mean value ± standard deviation of the five times repeated measurements.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–7.

Source data

Source Data Fig. 1

Source data for Fig. 1c,f.

Source Data Fig. 2

Source data for Fig. 2b,c.

Source Data Fig. 3

Source data for Fig. 3b,c,e,f.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5a,b.

Source Data Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data for Extended Data Fig. 4b–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WB., Hwang, S., Ko, HW. et al. Spin-torque-driven gigahertz magnetization dynamics in the non-collinear antiferromagnet Mn3Sn. Nat. Nanotechnol. 20, 487–493 (2025). https://doi.org/10.1038/s41565-025-01859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01859-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing