Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum-enabled microwave-to-optical transduction via silicon nanomechanics

Abstract

An interface between microwave and optical photons offers the potential to network remote superconducting quantum processors. To preserve fragile quantum states, a microwave-to-optical transducer must operate efficiently in the quantum-enabled regime by generating less than one photon of noise referred to its input. Here we achieve these criteria using an integrated electro-optomechanical device made from crystalline silicon. Our platform eliminates the need for heterogeneous integration with piezoelectric materials by utilizing electrostatic actuation of gigahertz-frequency nanomechanical oscillators. Leveraging the ultra-low mechanical dissipation in silicon, our microwave-to-optical transducers achieve below one photon of input-referred added noise (nadd = 0.58) under continuous-wave laser drives. This demonstration of continuous quantum-enabled microwave-to-optical transduction improves the upconversion rate by about two orders of magnitude beyond the state of the art (R = 0.47–1.9 kHz). The increased transduction rate and scalable fabrication of our devices may facilitate near-term use of transducers in distributed quantum computers and quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electro-optomechanical transduction in silicon.
Fig. 2: Transducer characterization.
Fig. 3: Mechanical quantum ground-state cooling.
Fig. 4: Quantum-enabled microwave-to-optical transduction.

Similar content being viewed by others

Data availability

The source data in the figures that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.14743911 (ref. 58). Other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 (2007).

    Article  CAS  Google Scholar 

  3. Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, X. et al. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article  Google Scholar 

  5. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  PubMed  Google Scholar 

  6. Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  7. Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020).

    Article  Google Scholar 

  8. Kumar, A. et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms. Nature 615, 614–619 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horsman, D., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    Article  Google Scholar 

  11. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014).

    Article  CAS  Google Scholar 

  12. Brubaker, B. M. et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS  Google Scholar 

  13. Sahu, R. et al. Entangling microwaves with light. Science 380, 718 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).

    Article  Google Scholar 

  16. Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7, 1714 (2020).

    Article  Google Scholar 

  17. Fu, W. et al. Cavity electro-optic circuit for microwave-to-optical conversion in the quantum ground state. Phys. Rev. A 103, 053504 (2021).

    Article  CAS  Google Scholar 

  18. Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 1 (2020).

    Article  Google Scholar 

  20. Rochman, J., Xie, T., Bartholomew, J. G., Schwab, K. C. & Faraon, A. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators. Nat. Commun. 14, 1 (2023).

    Article  Google Scholar 

  21. Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at single photon level with spins. Preprint at https://arxiv.org/abs/2407.08879 (2024).

  22. Zhu, N. et al. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica 7, 1291 (2020).

    Article  Google Scholar 

  23. Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 1 (2020).

    Google Scholar 

  24. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. 19, 1423 (2023).

    Article  CAS  Google Scholar 

  26. Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Meesala, S. et al. Non-classical microwave-optical photon pair generation with a chip-scale transducer. Nat. Phys. 20, 871–877 (2024).

  28. Meesala, S. et al. Quantum entanglement between optical and microwave photonic qubits. Phys. Rev. X 14, 031055 (2024).

  29. Scigliuzzo, M. et al. Phononic loss in superconducting resonators on piezoelectric substrates. New J. Phys. 22, 053027 (2020).

    Article  CAS  Google Scholar 

  30. Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    Article  Google Scholar 

  31. Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326 (2023).

    Article  CAS  Google Scholar 

  32. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  Google Scholar 

  34. Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

  35. Zhao, H., Bozkurt, A. & Mirhosseini, M. Electro-optic transduction in silicon via gigahertz-frequency nanomechanics. Optica 10, 790 (2023).

    Article  CAS  Google Scholar 

  36. Bretz-Sullivan, T. M. et al. High kinetic inductance NbTiN superconducting transmission line resonators in the very thin film limit. Appl. Phys. Lett. 121, 052602 (2022).

  37. Shearrow, A. et al. Atomic layer deposition of titanium nitride for quantum circuits. Appl. Phys. Lett. 113, 212601 (2018).

  38. Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).

  39. Lobo, R. P. S. M. et al. Photoinduced time-resolved electrodynamics of superconducting metals and alloys. Phys. Rev. B 72, 024510 (2005).

    Article  Google Scholar 

  40. Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015).

    Google Scholar 

  41. Stockill, R. et al. Gallium phosphide as a piezoelectric platform for quantum optomechanics. Phys. Rev. Lett. 123, 163602 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Ren, H. et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nat. Commun. 11, 1 (2020).

    Article  Google Scholar 

  43. Ramp, H. et al. Elimination of thermomechanical noise in piezoelectric optomechanical crystals. Phys. Rev. Lett. 123, 093603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kalaee, M. et al. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 14, 334 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845 (2019).

    Article  CAS  Google Scholar 

  46. Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69 (2020).

    Article  CAS  Google Scholar 

  47. Joe, G. D. et al. High Q-factor diamond optomechanical resonators with silicon vacancy centers at millikelvin temperatures. Nano Lett. 24, 6831–6837 (2024).

  48. Wang, C.-H., Li, F. & Jiang, L. Quantum capacities of transducers. Nat. Commun. 13, 6698 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krastanov, S. et al. Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Zhong, C., Han, X. & Jiang, L. Microwave and optical entanglement for quantum transduction with electro-optomechanics. Phys. Rev. Appl. 18, 054061 (2022).

    Article  CAS  Google Scholar 

  51. Niu, J. et al. Low-loss interconnects for modular superconducting quantum processors. Nat. Electron. 6, 235 (2023).

    Article  Google Scholar 

  52. Kolvik, J., Burger, P., Frey, J. & Laer, R. V. Clamped and sideband-resolved silicon optomechanical crystals. Optica 10, 913 (2023).

    Article  CAS  Google Scholar 

  53. Sonar, S. et al. High-efficiency low-noise optomechanical crystal photon-phonon transducers. Optica 12, 99–104 (2025).

  54. Mayor, F. M. et al. A two-dimensional optomechanical crystal for quantum transduction. Preprint at https://arxiv.org/abs/2406.14484 (2024).

  55. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 90 (2013).

    Article  PubMed  Google Scholar 

  56. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Safavi-Naeini, A. H. Quantum Optomechanics with Silicon Nanostructures. PhD thesis, California Institute of Technology (2013).

  58. Zhao, H., Chen, W. D., Kejriwal, A. & Mirhosseini, M. Data for “Quantum-enabled microwave-to-optical transduction via silicon nanomechanics”. Zenodo https://doi.org/10.5281/zenodo.14743911 (2025).

Download references

Acknowledgements

We acknowledge S. Meesala, O. Painter, A. Safavi-Naeini, A. Bozkurt and M. Kalaee for helpful discussions. This work was supported by the ARO/LPS Cross Quantum Technology Systems programme (grant W911NF-18-1-0103), the US Department of Energy Office of Science National Quantum Information Science Research Centers (Q-NEXT, award DE-AC02-06CH11357) and the National Science Foundation (awards 2137645 and 2238058). W.D.C. gratefully acknowledges support from the National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., W.D.C. and M.M. came up with the concept and designed the experiment. H.Z., W.D.C. and A.K. worked on the fabrication of the devices. H.Z. and W.D.C. conducted the measurements and analysed the data. All authors participated in the writing of the paper. M.M. supervised the project.

Corresponding author

Correspondence to Mohammad Mirhosseini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Microwave-to-optical transducer comparison.

Comparison of the transduction rate with the literature. Red dots are the measured rates of our transducer. References: Meesala, 202428; Sahu, 202229; Mirhosseini, 202024; Jiang, 202325; Brubaker, 202212, Weaver, 202327. For Refs. 25,28 (see points with asterisk), we have estimated nadd and next for operation in direct state conversion mode as detailed in supplementary section III. Shaded region denotes the quantum-enabled regime, where nadd < 1. The center points and error bars represent the best-fit value and 95% confidence interval, respectively. See supplementary section II.G and II.H for the models used to fit next. and nadd, respectively.

Extended Data Fig. 2 Measurement setup.

Acronyms: Isolator (Iso), beam splitter (BS), wavelength meter (λ-meter), optical switch (OSw), fiber polarization controller (FPC), band-pass filter (BPF), photodetector (PD), data-acquisition module (DAQ), amplitude modulator (a-m), signal generator (SG), variable optical attenuator (VOA), power meter (p-meter), circulator (Circ), device under test (DUT), phase modulator (ϕ-m), Erbium-doped fiber amplifier (EDFA), delay line (DL), retro-reflector (RR), variable coupler (VC), high-speed photodetector (HSPD), balanced photodetector (BPD), spectrum analyzer (SA), switch (Sw), vector network analyzer (VNA), eccosorb filter (Ecco), low-pass filter (LPF), bias-tee (BT), microwave switch (MSw), high-electron-mobility transistor (HEMT), room-temperature amplifier (RT amplifier).

Extended Data Fig. 3 Fridge setup.

A tuning coil is placed above the device chip to generate magnetic flux that tunes the on-chip microwave resonators. The device chip sits on a printed circuit board (PCB), with the on-chip coplanar waveguides wire-bonded to the PCB traces. The microwave lines are connected to the PCB via MMPX connectors.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Discussion and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Chen, W.D., Kejriwal, A. et al. Quantum-enabled microwave-to-optical transduction via silicon nanomechanics. Nat. Nanotechnol. 20, 602–608 (2025). https://doi.org/10.1038/s41565-025-01874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01874-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing