Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale high-entropy surface engineering promotes selective glycerol electro-oxidation to glycerate at high current density

Subjects

Abstract

Selective production of valuable glycerol chemicals, such as glycerate (which serves as an important chemical intermediate), poses a significant challenge due to the facile cleavage of C–C bonds and the presence of multiple reaction pathways. This challenge is more severe in the electro-oxidation of glycerol, which requires the development of desirable electrocatalysts. To facilitate the glycerol electro-oxidation reaction to glycerate, here we present an approach utilizing a high-entropy PtCuCoNiMn nanosurface. It exhibits exceptional activity (~200 mA cm−2 at 0.75 V versus a reversible hydrogen electrode) and selectivity (75.2%). In situ vibrational measurements and theoretical calculations reveal that the exceptional glycerol electro-oxidation selectivity and activity can be attributed to the unique characteristics of the high-entropy surface, which effectively modifies the electronic structure of the exposed Pt sites. The catalyst is successfully applied in an electrolyser for long-term glycerol electro-oxidation reaction, demonstrating excellent performance (~200 mA cm−2 at 1.2Vcell) over 210 h. The present study highlights that tailoring the catalytic sites at the catalyst–electrolyte interface by constructing a high-entropy surface is an effective strategy for electrochemical catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and structural characterizations.
Fig. 2: Analysis of surface oxidation of PtCuCoNiMn under CV electrochemical activation.
Fig. 3: Glycerol electro-oxidation activity and catalytic pathway.
Fig. 4: Catalytic mechanism investigation.
Fig. 5: DFT calculations.
Fig. 6: Assembly of flow glycerol electrolyser and its catalytic performance.

Similar content being viewed by others

Data availability

All data supporting the results and discussions of this study are available in this Article and its Supplementary Information or from the corresponding authors upon reasonable request.

References

  1. Da Silva Ruy, A. D., Ferreira, A. L. F., Bresciani, A. É., de Brito Alves, R. M. & Pontes, L. A. M. Market prospecting and assessment of the economic potential of glycerol from biodiesel. In Biotechnological Applications of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen Press, 2021).

  2. Yan, Y. et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 145, 6144–6155 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Schichtl, Z. G., Conlin, S. K., Mehrabi, H., Nielander, A. C. & Coridan, R. H. Characterizing sustained solar-to-hydrogen electrocatalysis at low cell potentials enabled by crude glycerol oxidation. ACS Appl. Energy Mater. 5, 3863–3875 (2022).

    Article  CAS  Google Scholar 

  4. de Souza, M. B. C. et al. Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: effects on activity and selectivity. ACS Catal. 9, 5104–5110 (2019).

    Article  Google Scholar 

  5. Houache, M. S. E. et al. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: insight into product selectivity using in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Sustain. Chem. Eng. 7, 14425–14434 (2019).

    Article  CAS  Google Scholar 

  6. Wang, Y., Xiao, Y. & Xiao, G. Sustainable value-added C3 chemicals from glycerol transformations: a mini review for heterogeneous catalytic processes. Chinese J. Chem. Eng. 27, 1536–1542 (2019).

    Article  CAS  Google Scholar 

  7. Valter, M., dos Santos, E. C., Pettersson, L. G. M. & Hellman, A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: insights from first-principles calculations. J. Phys. Chem. C 124, 17907–17915 (2020).

    Article  CAS  Google Scholar 

  8. Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article  CAS  Google Scholar 

  9. Dai, C. et al. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 356, 14–21 (2017).

    Article  CAS  Google Scholar 

  10. Huang, B. et al. Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation. Adv. Mater. 35, 2302233 (2023).

    Article  CAS  Google Scholar 

  11. Yu, X. et al. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution utilizing an efficient MoOx/Pt Catalyst. Small 17, 2104288 (2021).

    Article  CAS  Google Scholar 

  12. Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article  CAS  Google Scholar 

  13. Wu, J. et al. Ligand hybridization for electro-reforming waste glycerol into isolable oxalate and hydrogen. Angew. Chem. Int. Ed. 62, e202216083 (2023).

    Article  CAS  Google Scholar 

  14. Ma, Y. et al. Reaction mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol. Chem. Eng. Sci. 203, 228–236 (2019).

    Article  CAS  Google Scholar 

  15. Holade, Y., Morais, C., Servat, K., Napporn, T. W. & Kokoh, K. B. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal. 3, 2403–2411 (2013).

    Article  CAS  Google Scholar 

  16. Jeffery, D. Z. & Camara, G. A. The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem. Commun. 12, 1129–1132 (2010).

    Article  CAS  Google Scholar 

  17. Terekhina, I. & Johnsson, M. Improving glycerol electrooxidation performance on nanocubic PtCo Catalysts. ACS Appl. Mater. Interfaces 16, 56987–56996 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, W. et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).

    Article  CAS  Google Scholar 

  19. Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel cells. J. Am. Chem. Soc. 145, 11140–11150 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Xing, F., Ma, J., Shimizu, K. I. & Furukawa, S. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. 13, 5065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren, J.-T., Chen, L., Wang, H.-Y. & Yuan, Z.-Y. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52, 8319–8373 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Li, H. et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B 312, 121431 (2022).

    Article  CAS  Google Scholar 

  25. Liu, G. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 143, 11262–11270 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, L. et al. Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Appl. Catal. B 292, 120164 (2021).

    Article  CAS  Google Scholar 

  28. Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104, 4613–4636 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Luo, H. et al. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation. ACS Catal. 12, 14492–14506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xing, Z., Li, J., Wang, S., Su, C. & Jin, H. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Res. 15, 3866–3871 (2022).

    Article  CAS  Google Scholar 

  31. Jia, Q. et al. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: strain, ligand, and particle size effects. ACS Catal. 5, 176–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Jia, Q. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. et al. Promoting n-butane dehydrogenation over PtMn/SiO2 through structural evolution induced by a reverse water-gas shift reaction. ACS Catal. 12, 13506–13512 (2022).

    Article  CAS  Google Scholar 

  34. Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012).

    Article  CAS  Google Scholar 

  35. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Takimoto, D. et al. Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nat. Commun. 14, 19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, J., Yang, X. & Gong, M. Recent advances in glycerol valorization via electrooxidation: catalyst, mechanism and device. Chinese J. Catal. 43, 2966–2986 (2022).

    Article  CAS  Google Scholar 

  38. Simões, M., Baranton, S. & Coutanceau, C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B 93, 354–362 (2010).

    Article  Google Scholar 

  39. Zhang, W.-Y., Zou, S.-Z. & Cai, W.-B. Recent advances in glycerol electrooxidation on Pt and Pd: from reaction mechanisms to catalytic materials. J. Electrochem. 27, 233–256 (2021).

    Google Scholar 

  40. Vo, T.-G., Ho, P.-Y. & Chiang, C.-Y. Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide. Appl. Catal. B 300, 120723 (2022).

    Article  CAS  Google Scholar 

  41. Liu, C. et al. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst—CuO. Appl. Catal. B 265, 118543 (2020).

    Article  CAS  Google Scholar 

  42. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  45. Pang, X. et al. In situ electrochemical reconstitution of CF–CuO/CeO2 for efficient active species generation. Inorg. Chem. 61, 8940–8954 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem. Int. Ed. 60, 21464–21472 (2021).

    Article  CAS  Google Scholar 

  47. Vo, T.-G. et al. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant production of value-added tartronic acid and hydrogen fuel. Adv. Funct. Mater. 33, 2209386 (2023).

    Article  CAS  Google Scholar 

  48. Chang, Z., Huo, S., Zhang, W., Fang, J. & Wang, H. The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J. Phys. Chem. C 121, 11368–11379 (2017).

    Article  CAS  Google Scholar 

  49. Bu, L. et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 139, 9576–9582 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (no. 2023YFB4005900); National Natural Science Foundation of China (nos. 52271232 and 52171022); the Ministry of Industry and Information Technology of the People's Republic of China (no. 2024ZD0607700); Ningbo Youth Science and Technology Leading Talents Project (no. 2023QL026); Natural Science Foundation of Zhejiang Province (no. LY21E020008); the Ningbo S&T Innovation 2025 Major Special Program (no. 2022Z205); Youth Innovation Promotion Association, CAS (no. 2020300); and Natural Science Foundation of Ningbo City (no. 2023J253).

Author information

Authors and Affiliations

Contributions

Y. Lin, H. Yin and L.C. conceived the project design and supervised the research. Shuibo Wang and Y. Lin prepared the samples; measured their electrochemical properties; carried out the X-ray diffraction, X-ray photoelectron spectroscopy, TEM and in situ attenuated total reflectance FTIR characterizations; and analysed the data. Y.W. performed the XAS measurements. B.N. and K.J. performed the in situ Raman measurements. Y. Li and Z.T. performed the DFT calculations. Shuibo Wang and Y. Lin wrote the manuscript. L.C., Z.T. and H. Yin provided helpful suggestions, and revised the manuscript. Z.L., H. Yu and Shiwei Wang helped with the discussion of the manuscript.

Corresponding authors

Correspondence to Yichao Lin, Ziqi Tian, Hongfeng Yin or Liang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yan Chen, Hui Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Decay mechanism investigation.

a, A multi-steps CA testing curve for probing the GEOR activity decay. b, Chronoamperometric measurements of PtCuCoNiMn-EC using interval CA strategies with intermittent potential at 0.8 V vs. RHE in 1 M KOH with 0.1 M glycerol at r.t. over 6 h. c, Conversion rate of glycerol at different potentials in 1 M KOH with 0.1 M glycerol over Pt-EC and PtCuCoNiMn-EC. d, Faradaic efficiency for glycerate at multiple potentials over PtCuCoNiMn-EC. e, Conversion of glycerol during GEOR with time in 1 M KOH with 0.01 M glycerol over PtCuCoNiMn-EC.

Supplementary information

Supplementary Information

Supplementary Figs. 1–82, Tables 1–7, Notes 1–8, Diagram 1, characterization and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Lin, Y., Li, Y. et al. Nanoscale high-entropy surface engineering promotes selective glycerol electro-oxidation to glycerate at high current density. Nat. Nanotechnol. 20, 646–655 (2025). https://doi.org/10.1038/s41565-025-01881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01881-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing