Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries

Abstract

Polymer electrolytes hold great promise for safe and high-energy batteries comprising solid or semi-solid electrolytes. Multiphase polymer electrolytes, consisting of mobile and rigid phases, exhibit fast ion conduction and desired mechanical properties. However, fundamental challenges exist in understanding and regulating interactions at the electrode|electrolyte interface, especially when using high-potential layered oxide active materials at the positive electrode. Here we demonstrate that depletion of the mobile conductive phase at the interface contributes to battery performance degradation. Molecular ionic composite electrolytes, composed of a rigid-rod ionic polymer with nanometric mobile cations and anions, serve as a multiphase platform to investigate the evolution of ion conductive domains at the interface. Chemical and structural characterizations enable the visualization of concentration heterogeneity and spatially resolve the interfacial chemical states over a statistically significant field of view for buried interfaces. We report that concentration and chemical heterogeneities prevail at electrode|electrolyte interfaces, leading to phase separation in polymer electrolytes. Understanding the hidden roles of interfacial chemomechanics in polymer electrolytes enables us to design an interphase tailoring strategy based on electrolyte additives to mitigate the interfacial heterogeneity and improve battery performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphic representation of interfaces and interphases in an Li metal pouch cell with an MIC electrolyte.
Fig. 2: Electrochemical characterizations in symmetric and asymmetric cell configurations.
Fig. 3: Map and visualization of sulfur-containing ion distribution in basic MIC PEs via ex situ XRF measurements.
Fig. 4: Spatially resolved chemical analyses in basic MIC PE.
Fig. 5: The evolution of surface morphology and diffusion properties of electrochemically cycled MIC electrolyte.
Fig. 6: Evaluating the impact of additives on concentration and chemical heterogeneities in MIC electrolytes via XRF and XAS measurements.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the published article and its Supplementary Information. Source data are provided with this paper.

References

  1. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).

    Article  Google Scholar 

  2. Wan, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Choudhury, S. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun. 10, 4398 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Dong, T. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018).

    Article  CAS  Google Scholar 

  6. Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article  CAS  Google Scholar 

  7. Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).

    Article  CAS  Google Scholar 

  8. Wang, X. et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020).

    Article  CAS  Google Scholar 

  9. Glynos, E., Pantazidis, C. & Sakellariou, G. Designing all-polymer nanostructured solid electrolytes: advances and prospects. ACS Omega 5, 2531–2540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, G. et al. Trade-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Energy 5, e287 (2023).

    Article  CAS  Google Scholar 

  11. Gu, Y. et al. High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J. Am. Chem. Soc. 135, 9652–9655 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Cho, B. K., Jain, A., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Grundy, L. S. et al. Inaccessible polarization-induced phase transitions in a block copolymer electrolyte: an unconventional mechanism for the limiting current. Macromolecules 55, 7637–7649 (2022).

    Article  CAS  Google Scholar 

  14. Galluzzo, M. D., Loo, W. S., Schaible, E., Zhu, C. & Balsara, N. P. Dynamic structure and phase behavior of a block copolymer electrolyte under dc polarization. ACS Appl. Mater. Interfaces 12, 57421–57430 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Virgili, J. M., Nedoma, A. J., Segalman, R. A. & Balsara, N. P. Ionic liquid distribution in ordered block copolymer solutions. Macromolecules 43, 3750–3756 (2010).

    Article  CAS  Google Scholar 

  16. Gomez, E. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Choi, J. H., Ye, Y., Elabd, Y. A. & Winey, K. I. Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).

    Article  CAS  Google Scholar 

  18. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article  CAS  Google Scholar 

  19. Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019).

    Article  CAS  Google Scholar 

  20. Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    Article  CAS  Google Scholar 

  22. Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 1, 845–857 (2019).

    Article  CAS  Google Scholar 

  23. Sharon, D. et al. Molecular level differences in ionic solvation and transport behavior in ethylene oxide-based homopolymer and block copolymer electrolytes. J. Am. Chem. Soc. 143, 3180–3190 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Chintapalli, M. et al. Structure and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes in the high salt concentration limit. Macromolecules 49, 1770–1780 (2016).

    Article  CAS  Google Scholar 

  25. Shen, K. H. & Hall, L. M. Ion conductivity and correlations in model salt-doped polymers: effects of interaction strength and concentration. Macromolecules 53, 3655–3668 (2020).

    Article  CAS  Google Scholar 

  26. Lee, Y., Ma, B. & Bai, P. Overlimiting ion transport dynamic toward Sand’s time in solid polymer electrolytes. Mater. Today Energy 27, 101037 (2022).

    Article  CAS  Google Scholar 

  27. Lee, Y., Ma, B. & Bai, P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 13, 3504–3513 (2020).

    Article  CAS  Google Scholar 

  28. Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Devaux, D. et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).

    Article  CAS  Google Scholar 

  30. Kaboli, S. et al. Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in-situ scanning electron microscopy. Nano Lett. 20, 1607–1613 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2013).

    Article  PubMed  Google Scholar 

  32. Golozar, M. et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 18, 7583–7589 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Maslyn, J. A. et al. Growth of lithium dendrites and globules through a solid block copolymer electrolyte as a function of current density. J. Phys. Chem. C 122, 26797–26804 (2018).

    Article  CAS  Google Scholar 

  34. Harry, K. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).

    Article  CAS  Google Scholar 

  35. Andersson, E. K. W. et al. Early-stage decomposition of solid polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 9, 22462–22471 (2021).

    Article  CAS  Google Scholar 

  36. Zhang, X. et al. Multi-scale characterization techniques for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 224, 2200351 (2023).

    Article  CAS  Google Scholar 

  37. Bostwick, J. E. et al. Ionic interactions control the modulus and mechanical properties of molecular ionic composite electrolytes. J. Mater. Chem. C 10, 947–957 (2022).

    Article  CAS  Google Scholar 

  38. Yu, D. et al. Room temperature to 150 °C lithium metal batteries enabled by a rigid molecular ionic composite electrolyte. Adv. Energy Mater. 11, 2003559 (2021).

    Article  CAS  Google Scholar 

  39. Fox, R. J. et al. Nanofibrillar ionic polymer composites enable high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y. Double helical conformation and extreme rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yu, Z., He, Y., Wang, Y., Madsen, L. A. & Qiao, R. Molecular structure and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Hasanpoor, M. et al. Morphological evolution and solid-electrolyte interphase formation on LiNi0.6Mn0.2Co0.2O2 cathodes using highly concentrated ionic liquid electrolytes. ACS Appl. Mater. Interfaces 14, 13196–13205 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, D., Zanelotti, C. J., Fox, R. J., Dingemans, T. J. & Madsen, L. A. Solvent-cast solid electrolyte membranes based on a charged rigid-rod polymer and ionic liquids. ACS Appl. Energy Mater. 4, 6599–6605 (2021).

    Article  CAS  Google Scholar 

  48. Dong, Q. et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||graphite cells. ACS Appl. Energy Mater. 3, 695–704 (2020).

    Article  CAS  Google Scholar 

  49. Gao, H., Maglia, F., Lamp, P., Amine, K. & Chen, Z. Mechanistic study of electrolyte additives to stabilize high-voltage cathode-electrolyte interface in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 44542–44549 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Swiderska-Mocek, A. & Gabryelczyk, A. Interfacial stabilizing effect of lithium borates and pyrrolidinium ionic liquid in gel polymer electrolytes for lithium-metal batteries. J. Phys. Chem. C 127, 18875–18890 (2023).

    Article  CAS  Google Scholar 

  51. Yu, X. et al. Direct observation of the redistribution of sulfur and polysulfides in Li-S batteries during first cycle by in situ X-ray fluorescence microscopy. Adv. Energy Mater. 5, 1500072 (2015).

    Article  Google Scholar 

  52. Freiberg, A. T. S. et al. Species in lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy and X-ray fluorescence mapping. J. Phys. Chem. C 122, 5303–5316 (2018).

    Article  CAS  Google Scholar 

  53. Sun, B. et al. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).

    Article  CAS  Google Scholar 

  54. Vairavamurthy, A. Using X-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim. Acta A 54, 2009–2017 (1998).

    Article  Google Scholar 

  55. Lin, Z. et al. High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy 9, 408–416 (2014).

    Article  CAS  Google Scholar 

  56. Pickering, I. J., Prince, R. C., Divers, T. & George, G. N. Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett. 441, 11–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Dey, A. et al. Sulfur K-edge XAS and DFT calculations on nitrile hydratase: geometric and electronic structure of the non-heme iron active site. J. Am. Chem. Soc. 128, 533–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dezarnaud, C., Tronc, M. & Hitchcock, A. P. Inner shell spectroscopy of the carbon—sulfur bond. Chem. Phys. 142, 455–462 (1990).

    Article  CAS  Google Scholar 

  59. Jalilehvand, F. Sulfur: not a “silent” element any more. Chem. Soc. Rev. 35, 1256–1268 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under award number DE-EE0008860 (F.L. and L.A.M.). Part of the work was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy through the Advanced Battery Materials Research (BMR) Program (Battery500 Consortium) under contract number 683639 (F.L. and L.A.M.). F.L. and L.A.M. also acknowledge the seedling support from the Virginia Tech College of Science Strategic Initiative in Energy (03400). This work used shared facilities at the Virginia Tech Nanoscale Characterization and Fabrication Laboratory (NCFL) and Surface Analysis Laboratory, supported by the National Science Foundation (NSF) under grant number CHE-1531834. This research used 8-BM of the National Synchrotron Light Source II (NSLS-II), which is a US Department of Energy Office of Science User Facility at Brookhaven National Laboratory under contract number DE-SC0012704. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract number DE-AC02-06CH11357. NMC811 was produced at the US Department of Energy’s (DOE) CAMP (Cell Analysis, Modeling, and Prototyping) Facility, Argonne National Laboratory. The CAMP Facility is fully supported by the DOE Vehicle Technologies Program (VTP) within the core funding of the Applied Battery Research (ABR) for Transportation Program. We thank M. Hedge and T. J. Dingemans (University of North Carolina-Chapel Hill) and D. Yu (Virginia Tech) for discussions. We also thank M. Ashraf-Khorasani for chromatography analysis and discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.L. conceived and led the project. F.L. and J.M. designed the experiments. J.M. performed the materials synthesis, electrochemical measurements and characterizations. J.M., S.-M.B. and Y.D. performed the synchrotron X-ray characterization. Y.Z. and M.Y. assisted with the membrane processing. D.X. and L.T. helped with data analysis. J.A.R. and H.X. conducted ex situ atomic force microscopy. N.F.P. and L.A.M. conducted the pulsed-field-gradient NMR diffusiometry and participated in scientific discussions. Z.D. and L.L. conducted synchrotron X-ray micro-computed tomography. J.M. and F.L. analysed all the data and wrote the paper with the assistance of L.A.M. and S.-M.B. All authors approved the paper for publication.

Corresponding author

Correspondence to Feng Lin.

Ethics declarations

Competing interests

Part of the results in this paper is included in a patent application (application no. 63/734,312) filed by some co-authors (J.M., L.A.M. and F.L.).

Peer review

Peer review information

Nature Nanotechnology thanks Xin Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Graphic representation of synchrotron X-ray measurements to investigate interfacial degradation in polymer electrolyte-based cells.

Schematic showing synchrotron X-ray measurements of a solid-state battery cross-section, which combines X-ray fluorescence (XRF) microscopy and X-ray absorption spectroscopy (XAS) measurements to visualize ionic concentration and probe chemical states across buried interfaces of solid-state battery components. Sulfur species from IL (TFSI) and PBDT polymer (-SO3) are present in the MIC electrolyte. Tracking the sulfur species of polymer electrolytes with XRF mapping reveals local ionic concentration heterogeneities, and spatially resolved XAS analysis informs the evolution of new sulfur species from interfacial side reactions by probing the changes in the oxidation states of sulfur elements therein. From the right panel of the XRF map, the green area represents the regions containing sulfur species, the black areas indicate regions without sulfur species, and the red area represents the sample holder (see also Spatially resolved XRF/XAS measurement and Sample preparation for synchrotron measurements from Methods). The point scanning XAS on the cross-sectional sample probes sulfur chemical states across electrode|electrolyte interfaces with a spatial resolution of a few micrometers (Right part, point 1).

Supplementary information

Supplementary Information

Supplementary Figs. 1–33 and Notes 1–10.

Source data

Source Data Figs. 2–6

Statistical source data of Figs. 2–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, J., Bak, SM., Zhang, Y. et al. Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries. Nat. Nanotechnol. 20, 787–797 (2025). https://doi.org/10.1038/s41565-025-01885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01885-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing