Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm2 beyond 1,000 h

Abstract

The electrochemical CO reduction reaction (CORR) has attracted a surge of research interest in sustainably producing high-value multi-carbon products, such as acetate. Nevertheless, most current CORR catalysts exhibit low acetate current densities, poor longevity and limited acetate selectivity. Here we present a Zeolite Socony Mobil-confined Cu single-atom cluster (CuZSM SACL) for CORR, in which Cu SAs are chemically anchored via robust Cu–O–Si bonds while Cu CLs are physically trapped within the porous framework of zeolite cavities. Consequently, the CuZSM SACL-containing membrane electrode assembly enables a remarkable CO-to-acetate current density of 1.8 A cm2 with a high acetate Faraday efficiency of 71 ± 3%. More importantly, we demonstrate that the Cu-based membrane electrode assembly can stably catalyse CO to acetate at an industrial current density of 1 A cm2 at 2.7 V (Faraday efficiency 61 ± 5%) beyond 1,000 h at atmospheric pressure. This milestone sheds light on high-performing Cu-type catalysts for practical CORR applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization of catalysts.
Fig. 2: X-ray absorption spectroscopy analysis.
Fig. 3: CORR performance in flow cell.
Fig. 4: CORR performance in MEA.
Fig. 5: Mechanism investigation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the provided Source data and the Supplementary Information. Additional data are also available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The computational codes used in this work are available from the corresponding authors upon reasonable request.

References

  1. Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    Article  CAS  Google Scholar 

  2. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  3. Wang, H. et al. CO2 electrolysis towards acetate: a review. Curr. Opin. Electrochem. 39, 101253 (2023).

    Article  CAS  Google Scholar 

  4. Qian, Q., Zhang, J., Cui, M. & Han, B. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. Nat. Commun. 7, 11481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  6. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 288–396 (2022).

    Article  Google Scholar 

  7. Rong, Y. et al. Directing the selectivity of CO electrolysis to acetate by constructing metal-organic interfaces. Angew. Chem. Int. Ed. 62, e202309893 (2023).

    Article  CAS  Google Scholar 

  8. Wang, X. et al. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate. Nat. Commun. 15, 616 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, T. et al. Interfacial synergy between the Cu atomic layer and CeO2 promotes CO electrocoupling to acetate. ACS Nano 17, 8521–8529 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, X. et al. Synergy of Cu/C3N4 interface and Cu nanoparticles dual catalytic regions in electrolysis of CO to acetic acid. Angew. Chem. Int. Ed. 62, e202301507 (2023).

    Article  CAS  Google Scholar 

  11. Hendrik, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978 (2022).

    Article  Google Scholar 

  12. Kim, J. Y. T., Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 6, 1115–1124 (2023).

    Article  CAS  Google Scholar 

  13. Wei, P. et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Chang, B. et al. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy Environ. Sci. 16, 4714 (2023).

    Article  CAS  Google Scholar 

  15. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  16. Niu, W. et al. Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion. Nat. Commun. 14, 4882 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song, Y., Zhang, X., Xie, K., Wang, G. & Bao, X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).

    Article  CAS  Google Scholar 

  18. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  21. Wu, Z. Z. et al. Gerhardtite as a precursor to an efficient CO-to-acetate electroreduction catalyst. J. Am. Chem. Soc. 145, 24338–24348 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article  CAS  Google Scholar 

  23. Jin, J. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, G. et al. A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nat. Commun. 14, 501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang, M. et al. Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. J. Am. Chem. Soc. 145, 11323–11332 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, T. et al. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 12, 6022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat. Commun. 12, 3264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, N. et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm−2 and a durability of 1000 hours. Energy Environ. Sci. 14, 6338–6348 (2021).

    Article  CAS  Google Scholar 

  31. Delmo, E. P. et al. In situ infrared spectroscopic evidence of enhanced electrochemical CO2 reduction and C–C coupling on oxide-derived copper. J. Am. Chem. Soc. 46, 1935–1945 (2024).

    Article  Google Scholar 

  32. Li, J. et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat. Commun. 14, 340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wen, Y. et al. Cu7S4 nanosheets enriched with Cu–S bond for highly active and selective CO2 electroreduction to formate. J. Mater. Chem. A 11, 10823–10827 (2023).

    Article  CAS  Google Scholar 

  34. Jiang, H. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 6, 519–530 (2023).

  35. Cai, J. et al. Highly selective electrochemical reduction of CO2 into methane on nanotwinned Cu. J. Am. Chem. Soc. 145, 9136–9143 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhuansun, M. et al. Promoting CO2 electroreduction to multi-carbon products by hydrophobicity-induced electro-kinetic retardation. Angew. Chem. Int. Ed. 62, e202309875 (2023).

    Article  CAS  Google Scholar 

  37. Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 5, 45–54 (2022).

    Article  CAS  Google Scholar 

  38. Wang, P. et al. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 9, 4933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ren, W., Ma, W. & Hu, X. Tailored water and hydroxide transport at a quasi-two-phase interface of membrane electrode assembly electrolyzer for CO electroreduction. Joule 7, 2349–2360 (2023).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  42. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  43. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFA1504500 and 2024YFA1509500 to X.H.), the National Natural Science Foundation of China (22025108, U21A20327 and 22121001 to X.H.), the National Natural Science Foundation of China (22475181 to N.C.), the Fundamental Research Funds for the Central Universities of China (20720240059 to N.C.), the Postdoctoral Fellowship Program of CPSF (GZB20240393 to C.Z.), the start-up funding from Xiamen University National Key Research, the National Key Research and Development Program of China (2021YFB2500303 to D.S.), the National Natural Science Foundation of China (22075317, U21A20328, 22105220 and 52101277 to D.S.), the Strategic Priority Research Program (B) (XDB33030200 to D.S.) and the Project Funded by China Postdoctoral Science Foundation (2021M703457 to X.L.). We thank beamline BL14W1 (Shanghai Synchrotron Radiation Facility) for providing the beam time. We acknowledge support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and N.C. conceived and supervised the research. Y.W., C.Z. and J.L. designed and conducted the experiments. N.C., Y.W., C.Z. and J.L. wrote the draft. N.C. and X.H. edited the paper. J.H. conducted the DFT calculations. D.S., X.L. and C.Z. performed the AC-HAADF-STEM measurements. C.Z., S.L., J.L., T.Y. and W.L. helped for the materials synthesis. C.Z., C.-W.K., Y.-C.H., T.-S.C. and Z.H. performed the XAS analysis. X.Z. performed in situ ATR-FTIR testing. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Nanjun Chen or Xiaoqing Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37 and Tables 1–13.

Supplementary Data 1

1H NMR spectrum of the electrolyte to analyse liquid products after CORR testing in a flow cell in 1 M KOH.

Supplementary Data 2

1H NMR spectrum of the electrolyte to analyse the liquid products after CORR in MEA.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhan, C., Liu, J. et al. Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm2 beyond 1,000 h. Nat. Nanotechnol. 20, 656–663 (2025). https://doi.org/10.1038/s41565-025-01892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01892-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing