Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrosynthesis of pure urea from pretreated flue gas in a proton-limited environment established in a porous solid-state electrolyte electrolyser

Abstract

The electrosynthesis of pure urea via the co-reduction of CO2 and N2 remains challenging. Here we show that a proton-limited environment established in an electrolyser equipped with porous solid-state electrolyte, devoid of an aqueous electrolyte, can suppress the hydrogen evolution reaction and excessive hydrogenation of N2 to ammonia. This can instead be conducive to the C–N coupling of *CO2 with *NHNH (the intermediate from the semi-hydrogenation of N2), thereby facilitating the production of urea. By using nanosheets of an ultrathin two-dimensional metal–azolate framework with cyclic heterotrimetal clusters as catalyst, the Faradaic efficiency of urea production from pretreated flue gas (which contains mainly 85% N2 and 15% CO2) is as high as 65.5%, and no ammonia and other liquid products were generated. At a low cell voltage of 2.0 V, the current can reach 100 mA, and the urea production rate is as high as 5.07 g gcat−1 h−1 or 84.4 mmol gcat−1 h−1. Notably, it can continuously produce 6.2 wt% pure urea aqueous solution for at least 30 h, and about 1.24 g pure urea solid was obtained. The use of pretreated flue gas as a direct feedstock significantly reduces input costs, and the high reaction rate and selectivity contribute to a reduction in system scale and operational costs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of MAF-201.
Fig. 2: Electrochemical performances for urea electrosynthesis.
Fig. 3: Isotopic labelling experiments and stability test of MAF-201.
Fig. 4: Mechanism study.

Similar content being viewed by others

Data availability

The data supporting the finding of the study are available in the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Mao, Y. et al. Ambient electrocatalytic synthesis of urea by co-reduction of NO3 and CO2 over graphene-supported In2O3. Chin. Chem. Lett. 35, 108540 (2024).

    Article  CAS  Google Scholar 

  2. Zhang, S. et al. High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023).

    Article  CAS  Google Scholar 

  3. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, X., Zhou, X., Jing, Y. & Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 12, 4080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2022).

    Article  Google Scholar 

  6. Yin, H.-Q. et al. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures. J. Energy Chem. 84, 385–393 (2023).

    Article  CAS  Google Scholar 

  7. Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Mechanism of C–N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, Y. et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 14, 4491 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, M. et al. Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy. Nat. Commun. 14, 6994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, X. et al. Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N‐selectivity via one‐step C–N coupling. Angew. Chem. Int. Ed. 62, e202305447 (2023).

    Article  CAS  Google Scholar 

  12. Yuan, M. et al. Unveiling electrochemical urea synthesis by co‐activation of CO2 and N2 with Mott–Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 133, 11005–11013 (2021).

    Article  Google Scholar 

  13. Yuan, M. et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 14, 6605–6615 (2021).

    Article  CAS  Google Scholar 

  14. Chen, X. et al. Efficient C–N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1−xOy clusters. Proc. Natl Acad. Sci. USA 120, e2306841120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paul, S., Sarkar, S., Adalder, A., Banerjee, A. & Ghorai, U. K. Dual metal site-mediated efficient C–N coupling toward electrochemical urea synthesis. J. Mater. Chem. A 11, 13249–13254 (2023).

    Article  CAS  Google Scholar 

  16. Jiao, D. et al. Boosting the efficiency of urea synthesis via cooperative electroreduction of N2 and CO2 on MoP. J. Mater. Chem. A 11, 232–240 (2023).

    Article  CAS  Google Scholar 

  17. Yuan, M. et al. Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 12, 6048–6058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan, M. et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem. Catal. 2, 309–320 (2022).

    CAS  Google Scholar 

  19. Mukherjee, J. et al. Understanding the site‐selective electrocatalytic co‐reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes. Adv. Funct. Mater. 32, 2200882 (2022).

    Article  CAS  Google Scholar 

  20. Yuan, M. et al. Engineering surface atomic architecture of NiTe nanocrystals toward efficient electrochemical N2 fixation. Adv. Funct. Mater. 30, 2004208 (2020).

    Article  CAS  Google Scholar 

  21. Yuan, M. et al. Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ. Sci. 15, 2084–2095 (2022).

    Article  CAS  Google Scholar 

  22. Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, J. Y. ‘T.’, Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 6, 1115–1124 (2023).

    Article  CAS  Google Scholar 

  25. Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    Article  CAS  Google Scholar 

  26. Romiluyi, O., Danilovic, N., Bell, A. T. & Weber, A. Z. Membrane‐electrode assembly design parameters for optimal CO2 reduction. Electrochem. Sci. Adv. 3, e2100186 (2023).

    Article  CAS  Google Scholar 

  27. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Song, X. et al. One-step formation of urea from carbon dioxide and nitrogen using water microdroplets. J. Am. Chem. Soc. 145, 25910–25916 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Bell, A. T. A novel strategy for ionomer coating of Ag nanoparticles used for the electrochemical reduction of CO2 to CO in a membrane electrode assembly. Natl Sci. Rev. 11, nwad232 (2024).

    Article  PubMed  Google Scholar 

  30. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  31. Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu, H.-L. et al. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. J. Am. Chem. Soc. 146, 1144–1152 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Abdul-Baki, A. A., Teasdale, J. R., Korcak, R., Chitwood, D. J. & Huettel, R. N. Fresh-market tomato production in a low-input alternative system using cover-crop mulch. HortScience 31, 65–69 (1996).

    Article  Google Scholar 

  34. Kumar, V., Mills, D. J., Anderson, J. D. & Mattoo, A. K. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc. Natl Acad. Sci. USA 101, 10535–10540 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, E. J. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science 369, 392–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmitt, T. et al. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (US Department of Energy, 2022); https://www.osti.gov/biblio/1893822; https://doi.org/10.2172/1893822

  38. Skúlason, E. et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    Article  PubMed  Google Scholar 

  39. Resasco, J. & Bell, A. T. Electrocatalytic CO2 reduction to fuels: progress and opportunities. Trends Chem. 2, 825–836 (2020).

    Article  CAS  Google Scholar 

  40. Tăbăcaru, A. et al. Nickel(ii) and copper(i, ii)-based metal–organic frameworks incorporating an extended tris-pyrazolate linker. CrystEngComm 17, 4992–5001 (2015).

    Article  Google Scholar 

  41. Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article  Google Scholar 

  42. Huang, J. et al. Single‐product faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single‐atom nanozyme. Angew. Chem. Int. Ed. 61, e202210985 (2022).

    Article  CAS  Google Scholar 

  43. Kar, T., Scheiner, S., Roy, A. K. & Bettinger, H. F. Unusual low-vibrational C=O mode of COOH can distinguish between carboxylated zigzag and armchair single-wall carbon nanotubes. J. Phys. Chem. C 116, 26072–26083 (2012).

    Article  CAS  Google Scholar 

  44. Giubertoni, G., Sofronov, O. O. & Bakker, H. J. Observation of distinct carboxylic acid conformers in aqueous solution. J. Phys. Chem. Lett. 10, 3217–3222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhan, P. et al. Efficient electrosynthesis of urea over single‐atom alloy with electronic metal support interaction. Angew. Chem. Int. Ed. 63, e202409019 (2024).

    Article  CAS  Google Scholar 

  46. Qiu, W. et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63, e202402684 (2024).

    Article  CAS  Google Scholar 

  47. Ramadhany, P. et al. Triggering C‒N coupling on metal oxide nanocomposite for the electrochemical reduction of CO2 and NOx to formamide. Adv. Energy Mater. 14, 2401786 (2024).

    Article  CAS  Google Scholar 

  48. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  53. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2024YFF0506100 to P.-Q.L.), NSFC (grant nos. 22090061 and 22488101 to X.-M.C., grant no. 22371304 to P.-Q.L.), the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province (grant no. STKJ2023078 to X.-M.C. and P.-Q.L.), Fundamental Research Funds for the Central Universities, Sun Yat-Sen University (grant no. 24lgzy006 to P.-Q.L.), and the Guangzhou Science and Technology Program (grant no. SL2023A04J01767 to P.-Q.L.).

Author information

Authors and Affiliations

Authors

Contributions

P.-Q.L. designed the research. Y.-C.L. performed the syntheses and measurements. H.-L.Z. and X.-F.Q. assisted with the measurements. J.-R.H. performed the PDFT calculations. C.Y. performed the X-ray absorption spectroscopy measurements. Y.-C.L., J.-R.H., P.-Q.L. and X.-M.C. wrote the paper.

Corresponding author

Correspondence to Pei-Qin Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Lin Guo, Shuangyin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–51, discussion and Tables 1–5.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YC., Huang, JR., Zhu, HL. et al. Electrosynthesis of pure urea from pretreated flue gas in a proton-limited environment established in a porous solid-state electrolyte electrolyser. Nat. Nanotechnol. 20, 907–913 (2025). https://doi.org/10.1038/s41565-025-01914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01914-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing