Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Operando X-ray characterization platform to unravel catalyst degradation under accelerated stress testing in CO2 electrolysis

Abstract

Membrane-electrode assembly (MEA)-based CO2 electrolysis shows great potential for industrial-scale chemical production, but long-term stability remains a key challenge. The degradation mechanisms of catalysts and electrodes in MEAs are not yet fully understood. Here a customized operando synchrotron X-ray characterization platform was established to track the time- and space-resolved evolution of ions and water movement, crystal structure and catalyst variations in MEAs. Using Au and Ag model catalysts, we show that the crystalline phase catalyst stability and catalyst–substrate adhesion are critical to MEA durability. Small- and wide-angle X-ray scattering analysis reveals that Au catalysts, with their robust crystal structure and stable catalyst–substrate adhesion, maintain stability under accelerated stress tests, whereas Ag catalysts degrade due to particle agglomeration, an undesirable dissolution–recrystallization process and detachment. This study demonstrates the advanced capabilities of operando X-ray techniques in elucidating catalyst and electrode degradation in CO2 electrolysers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operando synchrotron X-ray characterization platform and spectroscopy analysis.
Fig. 2: Demonstration of pulse-driven AST.
Fig. 3: Particle size change and gas products change for Ag catalyst during the stability test.
Fig. 4: Ag nanoparticle size change before and after the AST stability test.
Fig. 5: Structural evolution of the Ag nanoparticles during the stability test.
Fig. 6: Comparison of normal stability test and pulsed AST.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information. Raw X-ray data generated at the European Synchrotron Radiation Facility (ESRF) large-scale facility are available at https://doi.esrf.fr/10.15151/ESRF-ES-1100173918 from 2026. Alternatively, these data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  2. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  PubMed  Google Scholar 

  3. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  PubMed  CAS  Google Scholar 

  4. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  5. Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article  CAS  Google Scholar 

  6. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  CAS  Google Scholar 

  7. Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    Article  CAS  Google Scholar 

  8. Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article  CAS  Google Scholar 

  9. de Sousa, L., Benes, N. E. & Mul, G. Evaluating the effects of membranes, cell designs, and flow configurations on the performance of Cu-GDEs in converting CO2 to CO. ACS EST Eng. 2, 2034–2042 (2022).

    Article  Google Scholar 

  10. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article  Google Scholar 

  11. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article  CAS  Google Scholar 

  12. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  13. Wu, M. et al. Sequential *CO management via controlling in situ reconstruction for efficient industrial-current-density CO2-to-C2+ electroreduction. Proc. Natl Acad. Sci. USA 120, e2302851120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  15. Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Article  Google Scholar 

  16. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  17. Nwabara, U. O. et al. Towards accelerated durability testing protocols for CO2 electrolysis. J. Mater. Chem. A 8, 22557–22571 (2020).

    Article  CAS  Google Scholar 

  18. Popović, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article  Google Scholar 

  19. Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article  CAS  Google Scholar 

  20. Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article  CAS  Google Scholar 

  21. Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    Article  PubMed  CAS  Google Scholar 

  22. Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped opportunities. ACS Catal. 12, 1037–1051 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu, M. et al. The capping agent is the key: structural alterations of Ag NPs during CO2 electrolysis probed in a zero-gap gas-flow configuration. J. Catal. 404, 371–382 (2021).

    Article  CAS  Google Scholar 

  24. Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 16, 1631–1643 (2023).

    Article  CAS  Google Scholar 

  25. Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

    Article  CAS  Google Scholar 

  26. Moss, A. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2022).

    Article  Google Scholar 

  27. Martens, I., Chattot, R. & Drnec, J. Decoupling catalyst aggregation, ripening, and coalescence processes inside operating fuel cells. J. Power Sources 521, 230851 (2022).

    Article  CAS  Google Scholar 

  28. Dorofeev, G. A., Streletskii, A. N., Povstugar, I. V., Protasov, A. V. & Elsukov, E. P. Determination of nanoparticle sizes by X-ray diffraction. Colloid J. 74, 675–685 (2012).

    Article  CAS  Google Scholar 

  29. Martens, I. et al. X-ray transparent proton-exchange membrane fuel cell design for in situ wide and small angle scattering tomography. J. Power Sources 437, 226906 (2019).

    Article  CAS  Google Scholar 

  30. Aßmann, P., Gago, A. S., Gazdzicki, P., Friedrich, K. A. & Wark, M. Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Curr. Opin. Electrochem. 21, 225–233 (2020).

    Article  Google Scholar 

  31. Li, D. et al. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021).

    Article  CAS  Google Scholar 

  32. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article  CAS  Google Scholar 

  33. Disch, J., Bohn, L., Metzler, L. & Vierrath, S. Strategies for the mitigation of salt precipitation in zero-gap CO2 electrolyzers producing CO. J. Mater. Chem. A 11, 7344–7357 (2023).

    Article  CAS  Google Scholar 

  34. Joensen, B. Ó. et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8, 1754–1771 (2024).

    Article  CAS  Google Scholar 

  35. Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett. 7, 2595–2601 (2022).

    Article  CAS  Google Scholar 

  36. Xu, Q. et al. Enriching surface-accessible CO2 in the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew. Chem. Int. Ed. 62, e202214383 (2022).

    Article  Google Scholar 

  37. Zeradjanin, A. R., Narangoda, P., Spanos, I., Masa, J. & Schlögl, R. How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021).

    Article  CAS  Google Scholar 

  38. Graedel, T. E. Corrosion mechanisms for silver exposed to the atmosphere. J. Electrochem. Soc. 139, 1963 (1992).

    Article  CAS  Google Scholar 

  39. Sachan, R. et al. Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045–2050 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Lu, X. et al. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    Article  PubMed  CAS  Google Scholar 

  41. Back, S., Yeom, M. S. & Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    Article  CAS  Google Scholar 

  42. Clark, E. L. et al. Influence of atomic surface structure on the activity of Ag for the electrochemical reduction of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).

    Article  CAS  Google Scholar 

  43. Chen, X. et al. Simultaneous SAXS/WAXS/UV–vis study of the nucleation and growth of nanoparticles: a test of classical nucleation theory. Langmuir 31, 11678–11691 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Cofell, E. R. et al. Potential cycling of silver cathodes in an alkaline CO2 flow electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Energy Mater. 5, 12013–12021 (2022).

    Article  CAS  Google Scholar 

  46. Moss, A. et al. Versatile high energy X-ray transparent electrolysis cell for operando measurements. J. Power Sources 562, 232754 (2022).

    Article  Google Scholar 

  47. Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kieffer, J. & Karkoulis, D. PyFAI, a versatile library for azimuthal regrouping. J. Phys. Conf. Ser. 425, 202012 (2013).

    Article  Google Scholar 

  49. Jinschek, J. R. & Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156–1168 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the ECOEthylene project from Innovation Fund Denmark (grant no. 8057-00018B), Danish National Research Foundation (grant no. DNRF146), Pioneer Center for Accelerating P2X Materials Discovery (CAPeX), DNRF (grant no. P3) and the Villum Center for the Science of Sustainable Fuels and Chemicals (grant no. 9455). We thank the European Synchroton Radiation Facility (ESRF) for providing the high-energy X-ray beam and ID 31 beamline staff for experimental support. We also thank S. Ullmann (Topsoe A/S) for his support on the transmission electron microscope, and Topsoe A/S is acknowledged for access to its TEM facility.

Author information

Authors and Affiliations

Authors

Contributions

Q.X. and J.A.Z.Z. organized this project, with B.S. and J.D. giving guidance. Q.X. wrote the manuscript and joined all revisions. Q.X., J.A.Z.Z., B.Ó.J. and L.T. performed the synchrotron beamline experiments, with A.S. and M.M. providing on-site support. A.B.M., S.G., S.Z. and I.C. participated in the whole discussion process. L.M.K. performed the electron microscope experiment, with S. Helveg giving guidance. L.M. and S. Huynh participated in GDE preparation and validation. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Brian Seger or Jakub Drnec.

Ethics declarations

Competing interests

J.A.Z.Z., L.T., L.M., S. Huynh and S.Z. have financial interests in Twelve, a company commercializing carbon dioxide electrolysis technology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Andrew Beale and Tao Yao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Notes 1–9.

Source data

Source Data Fig. 1

Raw source data.

Source Data Fig. 2

Raw source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 6

Raw source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Zamora Zeledón, J.A., Joensen, B.Ó. et al. Operando X-ray characterization platform to unravel catalyst degradation under accelerated stress testing in CO2 electrolysis. Nat. Nanotechnol. 20, 889–896 (2025). https://doi.org/10.1038/s41565-025-01916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01916-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing