Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes

Abstract

Electrosorption, the accumulation of electrolyte ions at charged interfaces, is a common phenomenon across various electrochemical systems. Its impact is particularly pronounced in nanoporous electrodes owing to their high surface-to-volume ratios. Although electrosorption alters the ion distribution at the electrode–electrolyte interface through the formation of an electrical double layer, the effects of electrosorbed ions on the charge storage dynamics in nanoporous electrodes and their ability to improve charging processes have often been overlooked. Here we use a multilayered reduced graphene oxide-based membrane as a model nanoporous electrode material, integrating numerical simulations with experimental insights. We monitor the spatiotemporal distribution of electrosorbed ions and electrical potentials across the nanopore network during fast charging of symmetrical laboratory-scale cells using aqueous and non-aqueous electrolyte solutions. This method allowed us to quantitatively assess how features of the nanoporous electrode mesostructure, such as nanoslit size, the distribution of nanoslit sizes and electrode thickness, dynamically influence ion electrosorption and the local electrical and chemical potentials across the network. Our findings reveal that the mesostructure of nanoporous electrodes influences how migration and diffusion currents, mediated by electrosorbed ions, respond to charging rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capacitance performance of symmetric MGM|electrolyte|MGM cells with varied electrode mass loadings and slit size distributions.
Fig. 2: Illustration of the spatiotemporal evolution of electrosorbed ions confined in a multilayered graphene nanoslit network.
Fig. 3: Electrosorption-mediated ion transport dynamics.
Fig. 4: Impact of the mesostructural electrode engineering strategy on the cell capacitance behaviour.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions are available in the Article or Supplementary Information. Source data are provided with this paper.

References

  1. Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  4. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019).

    Article  Google Scholar 

  7. Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).

  8. Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Hayre, R., Cha, S.-W., Colella, W. & Prinz, F. B. Fuel Cell Fundamentals (Wiley, 2016).

  10. Hu, Y. et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Fleischmann, S. et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 7, 222–228 (2022).

    Article  CAS  Google Scholar 

  14. Segalini, J., Daffos, B., Taberna, P. L., Gogotsi, Y. & Simon, P. Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55, 7489–7494 (2010).

    Article  CAS  Google Scholar 

  15. Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Article  Google Scholar 

  16. Shao, H., Wu, Y. C., Lin, Z., Taberna, P. L. & Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. et al. Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5, 787–808 (2020).

    Article  CAS  Google Scholar 

  18. Liu, X. et al. Structural disorder determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Newman, J. S. & Tobias, C. W. Theoretical analysis of current distribution in porous electrodes. J. Electrochem. Soc. 109, 1183 (1962).

    Article  CAS  Google Scholar 

  20. Newman, J. & Tiedemann, W. Porous‐electrode theory with battery applications. AlChE J. 21, 25–41 (2004).

    Article  Google Scholar 

  21. Dunn, D. & Newman, J. Predictions of specific energies and specific powers of double-layer capacitors using a simplified model. J. Electrochem. Soc. 147, 820 (2000).

    Article  CAS  Google Scholar 

  22. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  23. Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    Article  CAS  Google Scholar 

  24. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Klemen, Z. et al. Derivation of transmission line model from the concentrated solution theory (CST) for porous electrodes. J. Electrochem. Soc. 168, 070543 (2021).

    Article  Google Scholar 

  28. Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

    Article  CAS  Google Scholar 

  29. Mei, B. A. et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018).

    Article  CAS  Google Scholar 

  30. Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2018).

    Article  Google Scholar 

  31. Gupta, A., Zuk, P. J. & Stone, H. A. Charging dynamics of overlapping double layers in a cylindrical nanopore. Phys. Rev. Lett. 125, 076001 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Pilon, L., Wang, H. & d’Entremont, A. Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. J. Electrochem. Soc. 162, A5158 (2015).

    Article  CAS  Google Scholar 

  33. Biesheuvel, P. M. & Bazant, M. Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 81, 031502 (2010).

    Article  CAS  Google Scholar 

  34. Lin, Y., Lian, C., Berrueta, M. U., Liu, H. & van Roij, R. Microscopic model for cyclic voltammetry of porous electrodes. Phys. Rev. Lett. 128, 206001 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Mirzadeh, M., Gibou, F. & Squires, T. M. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism. Phys. Rev. Lett. 113, 097701 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Dydek, E. V. et al. Overlimiting current in a microchannel. Phys. Rev. Lett. 107, 118301 (2011).

    Article  PubMed  Google Scholar 

  37. Levie, D. R. On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 9, 1231–1245 (1964).

    Article  Google Scholar 

  38. Li, P. et al. A review of compact carbon design for supercapacitors with high volumetric performance. Small 17, e2007548 (2021).

    Article  PubMed  Google Scholar 

  39. Shao, Y. et al. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Z. et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5, 160–168 (2020).

    Article  CAS  Google Scholar 

  41. Dou, Q. & Park, H. S. Perspective on high‐energy carbon‐based supercapacitors. Energy Environ. Sci. 3, 286–305 (2020).

    CAS  Google Scholar 

  42. Lukatskaya, M. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  43. Lu, X. et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 11, 2079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, J. et al. Gradient design for high-energy and high-power batteries. Adv. Mater. 34, e2202780 (2022).

    Article  PubMed  Google Scholar 

  45. Zhang, Y. et al. Reducing the charge carrier transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56, 14847–14852 (2017).

    Article  CAS  Google Scholar 

  46. Ramadesigan, V., Methekar, R. N., Latinwo, F., Braatz, R. D. & Subramanian, V. R. Optimal porosity distribution for minimized ohmic drop across a porous electrode. J. Electrochem. Soc. 157, A1328–A1334 (2010).

    Article  CAS  Google Scholar 

  47. Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75, 021503 (2007).

    Article  Google Scholar 

  48. Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, Y. et al. Surface diffusion enhanced ion transport through two-dimensional nanochannels. Sci. Adv. 9, eadi8493 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao, Y. et al. New structural insights into densely assembled reduced graphene oxide membranes. Adv. Funct. Mater. 32, 2201535 (2022).

    Article  CAS  Google Scholar 

  51. Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article  CAS  Google Scholar 

  52. Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  53. Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, D. et al. Ion-specific nanoconfinement effect in multilayered graphene membranes: a combined nuclear magnetic resonance and computational study. Nano Lett. 23, 5555–5561 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Zhan and Y. Wang for discussions. This work is supported by funding from the Australia Research Council (grant numbers FL180100029, IC180100049 and DP220103498 to D.L. and grant number FT220100149 to J.Z.L.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.L., P.W. and K.Z. Methodology and data analysis: P.W., K.Z., J.L., D.L. and J.Z.L. Investigation: P.W. and K.Z. Visualization: P.W. and J.L. Funding acquisition: D.L. Project administration: D.L. Supervision: D.L., J.Z.L. and G.P.S. Writing—original draft: P.W., D.L. Writing—review and editing: P.W., J.L., D.L., J.Z.L., G.P.S., K.Z. and X.W.

Corresponding authors

Correspondence to Jefferson Zhe Liu or Dan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kangkang Ge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Figs. 1–17, Tables 1 and 2 and references.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhang, K., Liao, J. et al. Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes. Nat. Nanotechnol. 20, 1228–1236 (2025). https://doi.org/10.1038/s41565-025-01947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01947-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing