Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain-induced crumpling of graphene oxide lamellas to achieve fast and selective transport of H2 and CO2

Abstract

Graphene oxide (GO) membranes offer high selectivity and energy-efficient gas separation. However, their dense, layered structure and tortuous diffusion paths limit permeability, posing a barrier to industrial use. Here we present a method to enhance selectivity and permeability, maintaining the structural stability of such membranes. With an industrially friendly manufacturing method, we produce crumpled GO membranes with gas diffusion pathways controlled by a multidomain structure. These membranes achieve H2 permeability of approximately 2.1 × 104 barrer, significantly surpassing the permeability of flat lamellar GO membranes, which is below 100 barrer. Its H2/CO2 selectivity of 91 outperforms current membrane technologies. In addition, the crumpled membranes demonstrate stability under harsh conditions (−20 °C, 96% relative humidity), a critical requirement for practical applications. This work addresses the long-standing permeability–selectivity trade-off and establishes a robust, scalable platform for integrating two-dimensional materials into membrane technology for real-world applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly of fGO and cGO membranes.
Fig. 2: Tuning permeability, selectivity and stability of crumpled membranes and benchmark comparison.
Fig. 3: Variation of thickness to control strain during thermal deformation.
Fig. 4: Relationship between structural parameters and permeability–selectivity.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Additional raw data are available from the corresponding author upon reasonable request.

References

  1. Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 579, 229–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, M. et al. Comprehensive characterization of gas diffusion through graphene oxide membranes. J. Membr. Sci. 676, 121583 (2023).

    Article  CAS  Google Scholar 

  4. Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Polotskaya, G. A., Andreeva, D. V. & El’yashevich, G. K. Investigation of gas diffusion through films of fullerene-containing poly(phenylene oxide). Tech. Phys. Lett. 25, 555–557 (1999).

    Article  CAS  Google Scholar 

  6. Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen, M. et al. Control of gas selectivity and permeability through COF-GO composite membranes for sustainable decarbonization and hydrogen production. Carbon 219, 118855 (2024).

    Article  CAS  Google Scholar 

  8. Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal–organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rooney, A. P. et al. Anomalous twin boundaries in two dimensional materials. Nat. Commun. 9, 3597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cranford, S. W. & Buehler, M. J. Packing efficiency and accessible surface area of crumpled graphene. Phys. Rev. B 84, 205451 (2011).

    Article  Google Scholar 

  12. Haddad, K. et al. Crumpled graphene oxide for enhanced room temperature gas sensing: understanding the critical roles of surface morphology and functionalization. J. Mater. Chem. A 11, 447–459 (2023).

    Article  CAS  Google Scholar 

  13. Luo, J. et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, 1970).

  15. Meshhal, M. & Kühn, O. Diffusion of water confined between graphene oxide layers: implications for membrane filtration. ACS Appl. Nano Mater. 5, 11119–11128 (2022).

    Article  CAS  Google Scholar 

  16. Mouhat, F., Coudert, F.-X. & Bocquet, M.-L. Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, M. et al. Large-scale self-assembly of anisotropic graphene oxide films via blade coating: sustainable design and stimuli-responsive performance for biomimicry. Mater. Des. 233, 112205 (2023).

    Article  CAS  Google Scholar 

  18. Ma, X., Zachariah, M. R. & Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 12, 486–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, W.-N., Jiang, Y. & Biswas, P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J. Phys. Chem. Lett. 3, 3228–3233 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Song, S. et al. Facile synthesis of crumpled graphene oxide and its outstanding electrochemical performance as an anode in lithium ion batteries. J. Electron. Mater. 52, 877–886 (2023).

    Article  CAS  Google Scholar 

  21. Kang, Y. et al. The role of nanowrinkles in mass transport across graphene‐based membranes. Adv. Funct. Mater. 30, 2003159 (2020).

    Article  CAS  Google Scholar 

  22. Zhang, P. et al. Stress driven micron- and nano-scale wrinkles as a new class of transport pathways of two-dimensional laminar membranes towards molecular separation. J. Membr. Sci. 648, 120354 (2022).

    Article  CAS  Google Scholar 

  23. Gabardo, C. M., Yang, J., Smith, N. J., Adams-McGavin, R. C. & Soleymani, L. Programmable wrinkling of self-assembled nanoparticle films on shape memory polymers. ACS Nano 10, 8829–8836 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  25. Wang, R. et al. Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nat. Commun. 14, 2161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, S. et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy Environ. Sci. 9, 3107–3112 (2016).

    Article  CAS  Google Scholar 

  27. Li, P. et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katsnelson, M. I. The Physics of Graphene 2nd edn (Cambridge Univ. Press, 2020).

  30. Davidovitch, B. & Guinea, F. Indentation of solid membranes on rigid substrates with van der Waals attraction. Phys. Rev. E 103, 043002 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hure, J., Roman, B. & Bico, J. Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012).

    Article  PubMed  Google Scholar 

  33. Mezard, M., Parisi, G. & Virasoro, M. A. World Scientific Lecture Notes in Physics Vol. 9 (World Scientific, 1987).

  34. Principi, A. & Katsnelson, M. I. Stripe glasses in ferromagnetic thin films. Phys. Rev. B 93, 054410 (2016).

    Article  Google Scholar 

  35. Mauri, A. & Katsnelson, M. I. Frustrated magnets in the limit of infinite dimensions: dynamics and disorder-free glass transition. Phys. Rev. B 109, 144414 (2024).

    Article  CAS  Google Scholar 

  36. Kamber, U. et al. Self-induced spin glass state in elemental and crystalline neodymium. Science 368, eaay6757 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Plummer, A., Hanakata, P. Z. & Nelson, D. R. Curvature as an external field in mechanical antiferromagnets. Phys. Rev. Mater. 6, 115203 (2022).

    Article  CAS  Google Scholar 

  38. Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49, 62–69 (2011).

    Article  CAS  Google Scholar 

  39. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the Ministry of Education, Singapore, under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM, project no. EDUNC-33-18-279V12). We thank C. Wong from KEYENCE SINGAPORE PTE LTD. for his assistance with spatial microscopy of cGO membranes using the VHX-7000 digital microscope. A.U. acknowledges funding from the Materials Generative Design and Testing Framework (MAT-GDT) programme at A*STAR, provided through the AME Programmatic Fund (grant no. M24N4b0034). K.S.N. acknowledges support from the National Research Foundation, Singapore under its AI Singapore Programme (AISG award no. AISG3-RP-2022-028) and from the Royal Society (UK, grant no. RSRP\R\190000).

Author information

Authors and Affiliations

Authors

Contributions

D.V.A. conceived and designed the study. P.Z., Q.W., Y.Z., M.L., X.Z., M.C. and M.T. carried out the experiments. P.Z., M.T., A.D. and A.U. performed the data collection and analysis. P.Z., Q.W., M.T., M.I.K., K.S.N. and D.V.A. contributed to the development of the mechanochemical approach. P.Z., M.T., M.I.K., K.S.N. and D.V.A. wrote the paper with input from all authors. D.V.A. supervised the project and provided overall guidance. All authors discussed the results and contributed to the final paper.

Corresponding author

Correspondence to Daria V. Andreeva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Haiqing Lin, Weishen Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–3 and discussion.

Supplementary Video

Formation of cGO membranes during thermal shrinkage of polymer support.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, Q., Zhang, Y. et al. Strain-induced crumpling of graphene oxide lamellas to achieve fast and selective transport of H2 and CO2. Nat. Nanotechnol. 20, 1254–1261 (2025). https://doi.org/10.1038/s41565-025-01971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01971-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing