Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrabroadband nonlinear Hall rectifier using SnTe

Abstract

The rapid expansion of self-powered electronics in the Internet of Things, 6G communication and millimetre-wave systems calls for rectifiers capable of operating across ultrabroadband frequencies and at extremely low input power levels. However, conventional rectifiers based on semiconductor junctions face fundamental limitations such as parasitic capacitance and threshold voltages, preventing effective operation under broadband and ambient radio-frequency conditions. Here we present an ultrabroadband, zero-bias rectifier based on the nonlinear Hall effect in wafer-scale (001)-oriented topological crystalline insulator SnTe thin film. This material exhibits a large second-order conductivity of ~0.004 Ω⁻1 V⁻1, surpassing that of other wafer-scale materials. The nonlinear Hall effect arises primarily from a Berry curvature dipole, evidenced by angular-resolved transport measurements and first-principles calculations. The device demonstrates rectification from 23 MHz to 1 THz, with sensitivity down to –60 dBm in key radio-frequency bands, without any external bias. Rectified output power is scalable through series- and parallel-array topologies and can be enhanced using rectenna designs. As a proof of concept, we achieve the wireless powering of a thermistor using harvested radio-frequency energy, validating the potential of this material platform and nonlinear Hall effect for next-generation energy-autonomous microsystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure and NLHE in SnTe.
Fig. 2: Wireless RF rectification in SnTe rectifier.
Fig. 3: SnTe array configurations for sub-THz wireless rectification.
Fig. 4: Ultrabroadband rectification in SnTe and demonstration of energy harvesting for a thermistor.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Other relevant data are available from the corresponding authors upon reasonable request.

References

  1. Wang, W. et al. On-chip topological beamformer for multi-link terahertz 6G to XG wireless. Nature 632, 522–527 (2024).

    Article  PubMed  Google Scholar 

  2. Saad, W., Bennis, M. & Chen, M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw. 34, 134–142 (2020).

    Article  Google Scholar 

  3. Rangan, S., Rappaport, T. S. & Erkip, E. Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102, 366–385 (2014).

    Article  Google Scholar 

  4. Portilla, L. et al. Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2023).

    Google Scholar 

  5. Sharma, R. et al. Nanoscale spin rectifiers for harvesting ambient radiofrequency energy. Nat. Electron. 7, 653–661 (2024).

    Article  Google Scholar 

  6. Hemour, S. et al. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Techn. 62, 965–976 (2014).

    Article  Google Scholar 

  7. Sharma, R. et al. Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nat. Commun. 12, 2924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  PubMed  Google Scholar 

  9. Roy, S., Tiang, R. J.-J., Roslee, M. B., Ahmed, Md. T. & Mahmud, M. A. P. Quad-band multiport rectenna for RF energy harvesting in ambient environment. IEEE Access 9, 77464–77481 (2021).

    Article  Google Scholar 

  10. Le, M. T., Ngo, V. D., Nguyen, T. T. & Nguyen, Q. C. Dual-band ambient energy harvesting systems based on metamaterials for self-powered indoorwireless sensor nodes. Int. J. Microw. Wirel. Technol. 14, 1270–1278 (2022).

    Article  Google Scholar 

  11. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  PubMed  Google Scholar 

  12. Onishi, Y. & Fu, L. High-efficiency energy harvesting based on a nonlinear Hall rectifier. Phys. Rev. B 110, 075122 (2024).

    Article  CAS  Google Scholar 

  13. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Valenta, C. R. Fundamental limitations for Schottky diode RF energy harvesting. In IEEE International Conference on RFID Technology and Applications (RFID-TA) 188–193 (IEEE, 2015).

  17. He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, X. F. et al. Nonlinear transport and radio frequency rectification in BiTeBr at room temperature. Nat. Commun. 15, 245 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin, M.-S. et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 38, 017301 (2021).

    Article  CAS  Google Scholar 

  23. Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Makushko, P. et al. A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nat. Electron. 7, 207–215 (2024).

    Article  CAS  Google Scholar 

  25. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Min, L. et al. Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material. Nat. Commun. 14, 364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, B. et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat. Commun. 15, 5513 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  PubMed  Google Scholar 

  29. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Article  PubMed  Google Scholar 

  30. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    Article  CAS  Google Scholar 

  31. Wang, F. et al. Chromium-induced ferromagnetism with perpendicular anisotropy in topological crystalline insulator SnTe (111) thin films. Phys. Rev. B 97, 115414 (2018).

    Article  CAS  Google Scholar 

  32. Zeljkovic, I. et al. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 14, 318–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Okada, Y. et al. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341, 1496–1499 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Knox, K. R., Bozin, E. S., Malliakas, C. D., Kanatzidis, M. G. & Billinge, S. J. L. Local off-centering symmetry breaking in the high-temperature regime of SnTe. Phys. Rev. B 89, 014102 (2014).

    Article  Google Scholar 

  35. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Su, Y. et al. Orientation-controlled synthesis and Raman study of 2D SnTe. Nanotechnology 34, 505206 (2023).

    Article  CAS  Google Scholar 

  37. Zhang, C.-L. et al. Highly tunable topological system based on PbTe-SnTe binary alloy. Phys. Rev. Mater. 4, 091201 (2020).

    Article  CAS  Google Scholar 

  38. He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, Y. & Kim, H. On the coexistence of IEEE 802.11ac and WAVE in the 5.9 GHz Band. IEEE Commun. Mag. 52, 162–168 (2014).

    Article  Google Scholar 

  40. Suárez-Rodríguez, M. et al. Microscale chiral rectennas for energy harvesting. Adv. Mater. 36, 2400729 (2024).

    Article  Google Scholar 

  41. Hu, Z. et al. Terahertz nonlinear Hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2. Adv. Mater. 35, 2209557 (2023).

    Article  CAS  Google Scholar 

  42. Zhang, L. et al. High-frequency rectifiers based on type-II Dirac fermions. Nat. Commun. 12, 1584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanjuan, F., Gaborit, G. & Coutaz, J.-L. Sub-wavelength terahertz imaging through optical rectification. Sci. Rep. 8, 13492 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carletti, L. et al. Nonlinear THz generation through optical rectification enhanced by phonon-polaritons in lithium niobate thin films. ACS Photonics 10, 3419–3425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, B. et al. W-band photonic pulse compression radar with dual transmission mode beamforming. J. Light. Technol. 39, 1619–1628 (2021).

    Article  Google Scholar 

  46. Hemmetter, A. et al. Terahertz rectennas on flexible substrates based on one-dimensional metal-insulator-graphene diodes. ACS Appl. Electron. Mater. 3, 3747–3753 (2021).

    Article  CAS  Google Scholar 

  47. Yao, L., Steyaert, M. S. J. & Sansen, W. A 1-V 140-µW 88-dB audio sigma-delta modulator in 90-nm CMOS. IEEE J. Solid-State Circuits 39, 1809–1818 (2004).

    Article  Google Scholar 

  48. Leroux, P., Janssens, J. & Steyaert, M. A 0.8-dB NF ESD-protected 9-mW CMOS LNA operating at 1.23 GHz. IEEE J. Solid-State Circuits 37, 760–765 (2002).

    Article  Google Scholar 

  49. Gentile, P. et al. Electronic materials with nanoscale curved geometries. Nat. Electron. 5, 551–563 (2022).

    Article  Google Scholar 

  50. Schade, N. B., Schuster, D. I. & Nagel, S. R. A nonlinear, geometric Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 116, 24475–24479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015) (H.Y.), A*STAR under its Quantum Engineering Programme (NRF2022-QEP2-03-P13) (H.Y.), National Key Research and Development Program of China (2022YFB3505301) (X.X.), National Natural Science Foundation of China (52471253 and 12174237) (F.W. and X.X.), Central Government’s Special Fund for Local Science and Technology Development (YDZJSX2024D058) (F.W.) and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20240019) (F.W.). R.S. acknowledges the Anusandhan National Research Foundation (ANRF) for the Prime Minister’s Early Career Research Grant (ANRF/ECRG/2024/006343/ENS).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and F.W. conceived of and designed the experiments. F.H. fabricated the rectification devices and carried out the rectification measurements. S.Z. prepared the setups for rectification measurements. J. Lei and F.H. performed the equation derivation for rectified power and thermistor measurements. F.H. and S.Z. analysed the rectification data. P.Z. and Z.Y. grew the samples and carried out the X-ray diffraction measurements. L.Y. and J. Lai fabricated the transport devices and performed the transport measurements. F.W. and F.H. analysed the transport data. W.L. performed the theoretical calculations under the supervision of S.A.Y. H.P. conducted the second-harmonic measurements. C.W. performed the Raman measurements under the supervision of G.E. R.S. helped in the interpretation and figure preparation of the rectification data. F.H., F.W., R.S. and H.Y. wrote the paper with contributions from all authors. H.Y. supervised the project. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Fei Wang or Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Faxian Xiu, Peide Ye and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46, Table 1, Notes 1–24 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Zhao, P., Yang, L. et al. Ultrabroadband nonlinear Hall rectifier using SnTe. Nat. Nanotechnol. (2025). https://doi.org/10.1038/s41565-025-01993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-025-01993-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing