Extended Data Table 1 Performance comparison of our PhC-SLM (bold) to selected active 2D spatial light modulators from Fig. 1b. Estimated fill factors ζ are marked by a *. Wavelength-steered devices 100 are excluded to focus on active, individually-addressable arrays
From: A full degree-of-freedom spatiotemporal light modulator
Class [Year] | Device | Nx × Ny | \({{{\Omega }}}_{s}=\frac{\lambda }{{{{\Lambda }}}_{x}}\times \frac{\lambda }{{{{\Lambda }}}_{y}}\) | ζ [%] | ωs/2π [Hz] |
---|---|---|---|---|---|
EO [2022] | PhC-SLM | 8 × 8 | 10.6°×14.5° | 64 | 1.4 × 108 |
EO [2021] | χ(2) polymer-coated grating 73 | 2 × 2 | 0. 2° × 0. 2° | — | 5.0 × 107 |
EO [2019] | χ(3) thin-film plasmonic resonator 71 | 4 × 4 | 0. 8° × 1. 1° | 20* | 1.0 × 109 |
EO [2017] | Bilayer guided resonators 79 | 6 × 6 | 0. 3° × 0. 3° | 40* | 2 × 108 |
EO [2015] | Waveguided p-i-n modulators 101 | 4 × 4 | 1. 8° × 1. 8° | 10* | 2 × 108 |
EO [2011] | χ(2) polymer-coated grating 63 | 4 × 4 | 0. 1° × 0. 1° | 18* | 8.0 × 105 |
EO [2005] | MQW micropillar modulators 102 | 128 × 128 | 1. 3° × 1. 3° | 50 | 1.3 × 107 |
Thermal [2018] | Asymmetric Fabry-Perot cavity 35 | 6 × 6 | 3. 4° × 3. 4° | 59 | 1.4 × 104 |
Thermal [2013] | 8 × 8 | 9. 9° × 9. 9° | 10* | 1.1 × 105 | |
MEMS [2019] | Grating phase shifters 65 | 160 × 160 | 4. 4° × 4. 1° | 85* | 5.5 × 104 |
MEMS [2019] | Piston mirrors 104 | 960 × 540 | 3. 4° × 3. 4° | — | 2.0 × 104 |
MEMS [2014] | High-contrast gratings 64 | 8 × 8 | 2. 7° × 2. 7° | 36* | 5.0 × 105 |
MEMS [2001] | Piston mirrors 105 | 256 × 256 | 0. 9° × 0. 9° | 86 | 5.0 × 105 |
LC [2020] | Plasmonic metasurface 106 | 3 × 2 | 0. 3° × 0. 3° | — | 2.5 × 101 |
LC [2019] | ‘MacroSLM’ 107 | 1536 × 1536 | 3. 0° × 3. 0° | 95 | 6.0 × 102 |
LC [1994] | Binary ferroelectric LC 108 | 256 × 256 | 2. 2° × 2. 2° | 79 | 8.3 × 103 |