Optical nanoantenna field enhancement is hampered by material- and size-dependent losses. Researchers have now made an atomic antenna using the controlled formation of an isolated germanium vacancy colour centre in diamond, which enables giant near-field optical enhancement and which can detect and control nearby charges and induce energy transfer.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

References
Novotny, L. & van Hulst, N. Nat. Photon. 5, 83 (2011).
Agio, M. Nanoscale 4, 692–706 (2012).
Chen, X.-W., Sandoghdar, V. & Agio, M. Phys. Rev. Lett. 110, 153605 (2013).
Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Nature 405, 325–328 (2000).
Li, Z. et al. Nat. Photon. https://doi.org/10.1038/s41566-024-01456-5 (2024).
Wan, N. H. et al. Nature 583, 226–231 (2020).
Bhaskar, M. K. et al. Phys. Rev. Lett. 118, 223603 (2017).
Adambukulam, C. et al. Phys. Rev. Lett. 132, 060603 (2024).
Förster, T. Ann. Phys. 437, 55–75 (1948).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Castelletto, S., Agio, M. Diamond colour centre enables an atomic optical antenna. Nat. Photon. 18, 1004–1005 (2024). https://doi.org/10.1038/s41566-024-01522-y
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-024-01522-y