Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging integrated laser technologies in the visible and short near-infrared regimes

Abstract

Applications in timekeeping, quantum sensing and quantum computing have sparked growing demand for high-performance photonic integrated circuit (PIC) lasers at visible and short near-infrared wavelengths between 400 nm and 1,000 nm. This Review summarizes the application needs and recent advances in such PIC lasers, focusing on low-noise, continuous-wave operation needed for many quantum technologies. We discuss the building blocks for these laser systems, including the heterogeneous and hybrid integration of gain media, low-loss PICs, external-cavity and self-injection locking schemes, and nonlinear wavelength conversion through optical harmonic generation and optical parametric oscillation processes. We review demonstrations utilizing various combinations of these elements. Finally, we consider current PIC laser performance in the context of a few example quantum technologies that require lasers at multiple wavelengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications, wavelengths and physical systems in the visible and short near-infrared regimes.
Fig. 2: Gain media, laser types and laser metrics.
Fig. 3: Gain media integration for chip laser technology.
Fig. 4: Low-loss PIC platforms and their application to low-noise lasers.
Fig. 5: Ingredients of frequency-converted lasers, major nonlinear optical approaches and phase-matching methods.

Similar content being viewed by others

Data availability

The compiled data shown in the figures are available from the corresponding author upon reasonable request.

References

  1. Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).

    Article  Google Scholar 

  2. Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

    Article  ADS  Google Scholar 

  3. Li, N. et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv. Opt. Mater. 10, 2201008 (2022).

    Article  Google Scholar 

  4. Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1 (2023).

    Article  Google Scholar 

  5. Blumenthal, D. J. Photonic integration for UV to IR applications. APL Photon. 5, 020903 (2020).

    Article  ADS  Google Scholar 

  6. Wu, T.-C., Chi, Y.-C., Wang, H.-Y., Tsai, C.-T. & Lin, G.-R. Blue laser diode enables underwater communication at 12.4 Gbps. Sci. Rep. 7, 40480 (2017).

    Article  ADS  Google Scholar 

  7. Borisov, S. M. & Wolfbeis, O. S. Optical biosensors. Chem. Rev. 108, 423–461 (2008).

    Article  Google Scholar 

  8. Soler, M., Calvo-Lozano, O., Estevez, M.-C. & Lechuga, L. M. Nanophotonic biosensors: driving personalized medicine. Opt. Photon. News 31, 24–31 (2020).

    Article  Google Scholar 

  9. Buckley, E. Laser wavelength choices for pico-projector applications. J. Disp. Technol. 7, 402–406 (2011).

    Article  ADS  Google Scholar 

  10. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  11. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  ADS  Google Scholar 

  12. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  13. Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019).

    Article  ADS  Google Scholar 

  14. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article  ADS  Google Scholar 

  15. Heindel, T., Kim, J.-H., Gregersen, N., Rastelli, A. & Reitzenstein, S. Quantum dots for photonic quantum information technology. Adv. Opt. Photon. 15, 613 (2023).

    Article  Google Scholar 

  16. Cholsuk, C., Suwanna, S. & Vogl, T. Tailoring the emission wavelength of color centers in hexagonal boron nitride for quantum applications. Nanomaterials 12, 2427 (2022).

    Article  Google Scholar 

  17. Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article  ADS  Google Scholar 

  18. Holloway, C. L. et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  19. Moustakas, T. D. & Paiella, R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 80, 106501 (2017).

    Article  ADS  Google Scholar 

  20. Moulton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125–133 (1986).

    Article  ADS  Google Scholar 

  21. Pavlopoulos, T. Scaling of dye lasers with improved laser dyes. Prog. Quantum Electron. 26, 193–224 (2002).

    Article  ADS  Google Scholar 

  22. Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article  ADS  Google Scholar 

  23. Wang, Y., Holguín-Lerma, J. A., Vezzoli, M., Guo, Y. & Tang, H. X. Photonic-circuit-integrated titanium:sapphire laser. Nat. Photon. 17, 338–345 (2023).

    Article  ADS  Google Scholar 

  24. Nagarajan, R. et al. InP photonic integrated circuits. IEEE J. Sel. Topics Quantum Electron. 16, 1113–1125 (2010).

    Article  ADS  Google Scholar 

  25. Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).

    Article  ADS  Google Scholar 

  26. Boller, K.-J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2019).

    Article  Google Scholar 

  27. Zhang, J. et al. III–V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon. 4, 110803 (2019).

    Article  ADS  Google Scholar 

  28. Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).

    Article  Google Scholar 

  29. Dietrich, P.-I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).

    Article  ADS  Google Scholar 

  30. Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).

    Article  Google Scholar 

  31. Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article  Google Scholar 

  32. Liang, D. & Bowers, J. E. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manufac. 2, 5 (2021).

    Article  Google Scholar 

  33. Yang, C. et al. Advances in silicon-based, integrated tunable semiconductor lasers. Nanophotonics 12, 197–217 (2023).

    Article  Google Scholar 

  34. Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article  Google Scholar 

  35. Li, Q. & Lau, K. M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).

    Article  Google Scholar 

  36. Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article  ADS  Google Scholar 

  37. Wei, W.-Q. et al. Monolithic integration of embedded III–V lasers on SOI. Light Sci. Appl. 12, 84 (2023).

    Article  ADS  Google Scholar 

  38. Shang, C. et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 11, 299 (2022).

    Article  ADS  Google Scholar 

  39. Sun, Y. et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photon. 10, 595–599 (2016).

    Article  ADS  Google Scholar 

  40. Vogelbacher, F. et al. Integrated silicon nitride organic hybrid DFB laser with inkjet printed gain medium. Opt. Express 27, 29350–29356 (2019).

    Article  ADS  Google Scholar 

  41. Cegielski, P. J. et al. Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express 25, 13199–13206 (2017).

    Article  ADS  Google Scholar 

  42. Xie, W. et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article  Google Scholar 

  43. Kohler, D. et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl. 10, 64 (2021).

    Article  ADS  Google Scholar 

  44. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  ADS  Google Scholar 

  45. Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article  ADS  Google Scholar 

  46. Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    Article  ADS  Google Scholar 

  47. Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article  ADS  Google Scholar 

  48. Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).

    Article  Google Scholar 

  49. West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photon. 4, 026101 (2019).

    Article  ADS  Google Scholar 

  50. Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).

    Article  ADS  Google Scholar 

  51. Liu, X. et al. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 5, 1279–1282 (2018).

    Article  Google Scholar 

  52. Wunderer, T. et al. Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips. Opt. Lett. 48, 2781–2784 (2023).

    Article  Google Scholar 

  53. Spektor, G. et al. Universal visible emitters in nanoscale integrated photonics. Optica 10, 871–879 (2023).

    Article  Google Scholar 

  54. Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon. 6, 071101 (2021).

    Article  ADS  Google Scholar 

  55. Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755 (2021).

    Article  ADS  Google Scholar 

  56. Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960 (2022).

    Article  ADS  Google Scholar 

  57. Chanana, A. et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat. Commun. 13, 7693 (2022).

    Article  ADS  Google Scholar 

  58. Shah Hosseini, E., Yegnanarayanan, S., Atabaki, A. H., Soltani, M. & Adibi, A. High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt. Express 17, 14543 (2009).

    Article  ADS  Google Scholar 

  59. Barclay, P. E., Srinivasan, K., Painter, O., Lev, B. & Mabuchi, H. Integration of fiber-coupled high-Q SiNx microdisks with atom chips. Appl. Phys. Lett. 89, 131108 (2006).

    Article  ADS  Google Scholar 

  60. Smith, J. A., Francis, H., Navickaite, G. & Strain, M. J. SiN foundry platform for high performance visible light integrated photonics. Opt. Mater. Express 13, 458 (2023).

    Article  ADS  Google Scholar 

  61. Stone, J. R., Lu, X., Moille, G. & Srinivasan, K. Efficient chip-based optical parametric oscillators from 590 to 1150 nm. APL Photon. 7, 121301 (2022).

    Article  ADS  Google Scholar 

  62. Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).

    Article  ADS  Google Scholar 

  63. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. Optica 7, 1417–1425 (2020).

    Article  ADS  Google Scholar 

  64. Domeneguetti, R. R. et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths. Optica 8, 316–322 (2021).

    Article  ADS  Google Scholar 

  65. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  ADS  Google Scholar 

  66. Subramanian, A. Z. et al. Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photon. J. 5, 2202809 (2013).

    Article  ADS  Google Scholar 

  67. Day, M. L., Low, P. J., White, B., Islam, R. & Senko, C. Limits on atomic qubit control from laser noise. npj Quantum Inf. 8, 72 (2022).

    Article  ADS  Google Scholar 

  68. Jiang, X., Scott, J., Friesen, M. & Saffman, M. Sensitivity of quantum gate fidelity to laser phase and intensity noise. Phys. Rev. A 107, 042611 (2023).

    Article  ADS  Google Scholar 

  69. Ohtsu, M. & Kotajima, S. Linewidth reduction of a semiconductor laser by electrical feedback. IEEE J. Quantum Electron. 21, 1905–1912 (1985).

    Article  ADS  Google Scholar 

  70. Yariv, A. Quantum Electronics (Wiley, 1989).

  71. Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, 111101 (2019).

    Article  ADS  Google Scholar 

  72. Zhang, Z. et al. Photonic integration platform for rubidium sensors and beyond. Optica 10, 752 (2023).

    Article  Google Scholar 

  73. Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904 (2021).

    Article  ADS  Google Scholar 

  74. Franken, C. A. A. et al. Hybrid integrated near UV lasers using the deep-UV Al2O3 platform. Preprint at http://arxiv.org/abs/2302.11492 (2023).

  75. Wieman, C. E. & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991).

    Article  ADS  Google Scholar 

  76. Kondratiev, N. M. et al. Recent advances in laser self-injection locking to high-Q microresonators. Front. Phys. 18, 21305 (2023).

    Article  ADS  Google Scholar 

  77. Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167 (2017).

    Article  ADS  Google Scholar 

  78. Lu, X., Rogers, S., Jiang, W. C. & Lin, Q. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett. 105, 151104 (2014).

    Article  ADS  Google Scholar 

  79. Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article  ADS  Google Scholar 

  80. Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).

    Article  ADS  Google Scholar 

  81. Isichenko, A., Chauhan, N., Liu, K., Harrington, M. W. & Blumenthal, D. J. Chip-scale, sub-Hz fundamental sub-kHz integral linewidth 780 nm laser through self-injection-locking a Fabry–Pérot laser to an ultra-high Q integrated resonator. Preprint at https://arxiv.org/abs/2307.04947 (2023).

  82. Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  83. Eggleton, B. J., Poulton, C. G., Rakich, P. T., Steel, M. J. & Bahl, G. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).

    Article  ADS  Google Scholar 

  84. Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article  ADS  Google Scholar 

  85. Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).

    Article  ADS  Google Scholar 

  86. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  87. Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).

    Article  ADS  Google Scholar 

  88. Strekalov, D. V., Thompson, R. J., Baumgartel, L. M., Grudinin, I. S. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495–14501 (2011).

    Article  ADS  Google Scholar 

  89. Zhao, Q. et al. Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica 8, 1481 (2021).

    Article  ADS  Google Scholar 

  90. Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443 (2018).

  91. Goyvaerts, J. et al. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica 8, 1573 (2021).

  92. Op De Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288 (2021).

  93. Zhang, X. et al. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett. 122, 081103 (2023).

    Article  ADS  Google Scholar 

  94. Dorche, A. E., Nader, N., Stanton, E. J., Nam, S. W. & Mirin, R. P. Heterogeneously integrated near-infrared DFB laser on tantalum pentoxide. In Optical Fiber Communication Conference (OFC) Tu3C.6 (Optica Publishing Group, 2023).

  95. Zhou, X. et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 71, 100263 (2020).

    Article  Google Scholar 

  96. Li, P. et al. Demonstration of yellow (568 nm) stimulated emission from optically pumped InGaN/GaN multi-quantum wells. Appl. Phys. Lett. 121, 071103 (2022).

    Article  Google Scholar 

  97. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).

  98. Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    Article  ADS  Google Scholar 

  99. Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).

    Article  Google Scholar 

  100. Shin, W., Sun, Y., Soltani, M. & Mi, Z. Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters. Appl. Phys. Lett. 118, 211103 (2021).

    Article  ADS  Google Scholar 

  101. He, C. et al. Ultra-high Q alumina optical microresonators in the UV and blue bands. Opt. Express 31, 33923–33929 (2023).

    Article  ADS  Google Scholar 

  102. Liu, J. et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65, 104201 (2022).

    Article  ADS  Google Scholar 

  103. He, J. et al. Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9, 3781–3804 (2020).

    Article  Google Scholar 

  104. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  105. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photon. 15, 131–136 (2021).

    Article  ADS  Google Scholar 

  106. Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photon. 16, 134–141 (2022).

    Article  ADS  Google Scholar 

  107. Li, B. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 10, 1241 (2023).

  108. Clementi, M. et al. A chip-scale second-harmonic source via injection-locked all-optical poling. Light Sci. Appl. 12, 296 (2023).

    Article  ADS  Google Scholar 

  109. Lu, X. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photon. 13, 593–601 (2019).

    Article  ADS  Google Scholar 

  110. Wang, J.-Q. et al. Efficient frequency conversion in a degenerate χ(2) microresonator. Phys. Rev. Lett. 126, 133601 (2021).

    Article  ADS  Google Scholar 

  111. Bruch, A. W. et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, 131102 (2018).

    Article  ADS  Google Scholar 

  112. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455 (2019).

  113. Park, T. et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett. 47, 2706 (2022).

  114. Sayem, A. A. et al. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl. Phys. Lett. 119, 231104 (2021).

    Article  ADS  Google Scholar 

  115. Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article  ADS  Google Scholar 

  116. Ling, J. et al. Self-injection locked frequency conversion laser. Laser Photon. Rev. 17, 2200663 (2023).

  117. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).

    Article  Google Scholar 

  118. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    Article  ADS  Google Scholar 

  119. Surya, J. B., Guo, X., Zou, C.-L. & Tang, H. X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103 (2018).

  120. Ling, J. et al. Third-harmonic generation on chip through cascaded χ(2) processes. In Conference on Lasers and Electro-Optics SF4G.3 (Optica Publishing Group, 2022).

  121. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  122. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  123. Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    Article  ADS  Google Scholar 

  124. Lin, Q., Johnson, T. J., Perahia, R., Michael, C. P. & Painter, O. J. A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Opt. Express 16, 10596–10610 (2008).

    Article  ADS  Google Scholar 

  125. Sayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photon. 13, 701–706 (2019).

    Article  ADS  Google Scholar 

  126. Black, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators. Optica 9, 1183–1189 (2022).

    Article  ADS  Google Scholar 

  127. Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).

    Article  Google Scholar 

  128. Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip. Nat. Commun. 14, 242 (2023).

    Article  ADS  Google Scholar 

  129. Stone, J. R. et al. Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators. Nat. Photon. 18, 192–199 (2023).

    Article  ADS  Google Scholar 

  130. Loh, W. et al. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 588, 244–249 (2020).

    Article  ADS  Google Scholar 

  131. Savchenkov, A. A. et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep. 10, 16494 (2020).

    Article  Google Scholar 

  132. Long, D. A., Stone, J. R., Sun, Y., Westly, D. & Srinivasan, K. Sub-Doppler spectroscopy of quantum systems through nanophotonic spectral translation of electro-optic light. Nat. Photon. https://doi.org/10.1038/s41566-024-01532-w (2023).

  133. Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).

    Article  ADS  Google Scholar 

  134. Valdez, F., Mere, V. & Mookherjea, S. 100 GHz bandwidth, 1 volt integrated electro-optic Mach–Zehnder modulator at near-IR wavelengths. Optica 10, 578 (2023).

  135. Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    Article  ADS  Google Scholar 

  136. Ropp, C. et al. Integrating planar photonics for multi-beam generation and atomic clock packaging on chip. Light Sci. Appl. 12, 83 (2023).

    Article  ADS  Google Scholar 

  137. Isichenko, A. et al. Photonic integrated beam delivery for a rubidium 3D magneto-optical trap. Nat. Commun. 14, 3080 (2023).

    Article  ADS  Google Scholar 

  138. Mehta, K. K. et al. Integrated optical multiion quantum logic. Nature 586, 533–537 (2020).

    Article  ADS  Google Scholar 

  139. Ferdinand, A. R. et al. Towards a strontium optical clock system with metasurface optics and integrated non- linear photonics. In Conference on Lasers and Electro-Optics 2023 SM2K.2 (Optica Publishing Group, 2023).

  140. Lin, Y. et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 13, 6362 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.L. and K.S. acknowledge funding support from the DARPA LUMOS and NIST-on-a-chip programs. X.L. acknowledges TEDCO MII. X.L. acknowledges Q. Yan for obtaining permission to reproduce the copyrighted images. L.C. acknowledges Y. Chen for graphic design. L.C. acknowledges support from the National Key Research and Development Program of China (grant no. 2021YFB2801200), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (grant no. Z231100006023007), the Beijing Municipal Natural Science Foundation (grant no. Z220008), and the National Natural Science Foundation of China (grant no. 12293052). We acknowledge helpful discussions with S. Papp, J. Stone, M. Pu and A. Chanana.

Author information

Authors and Affiliations

Authors

Contributions

K.S. and J.E.B. led the planning and organization of the paper. X.L., L.C. and K.S. led the preparation of figures, with help from M.A.T. K.S. and X.L. led the writing of the text, with assistance from L.C., M.A.T., T.K. and J.E.B. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kartik Srinivasan.

Ethics declarations

Competing interests

X.L. is a co-founder of LightSiNC NanoTech. J.E.B. and T.K. are co-founders of Nexus Photonics, where M.A.T. is a shareholder. In addition, J.E.B. is a co-founder of Quintessent. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sonia García-Blanco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Chang, L., Tran, M.A. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024). https://doi.org/10.1038/s41566-024-01529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01529-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing