Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-optical nonlinear Compton scattering performed with a multi-petawatt laser

Abstract

Light–matter interactions driven by ultrahigh-intensity lasers have great potential to uncover the physics associated with quantum electrodynamics (QED) processes occurring in neutron stars and black holes. The Compton scattering between an ultra-relativistic electron beam and an intense laser can reveal a new interaction regime, known as strong-field QED. Here we present an experimental demonstration of nonlinear Compton scattering in a strong laser field, in which a laser-accelerated multi-gigaelectronvolt electron scatters off hundreds of laser photons and converts them into a single gamma-ray photon with several-hundred-megaelectronvolt energy. Along with particle-in-cell (PIC)-QED simulations and analytical calculations, our experimental measurement of gamma-ray spectra verifies the occurrence of Compton scattering in the strongly nonlinear regime, paving the road to examine nonlinear Breit–Wheeler pair production and QED cascades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Experimental confirmation of Compton scattering.
Fig. 3: Compton scattering signal.
Fig. 4: Gamma-ray energy versus electron energy.

Similar content being viewed by others

Data availability

All data used for this study are available in the Article and its Supplementary Information. Any additional information can be obtained from the corresponding authors upon reasonable request.

References

  1. Aoyama, T., Hayakawa, M., Kinoshita, T. & Nio, M. Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109, 111807 (2012).

    Article  ADS  Google Scholar 

  2. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Phys. Plasmas 27, 050601 (2020).

    Article  ADS  Google Scholar 

  3. Di Piazza, A. et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012).

    Article  Google Scholar 

  4. Ruffini, R., Vereshchagin, G. & Xue, S. S. Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1–140 (2010).

    Article  ADS  Google Scholar 

  5. Uzdensky, D. A. & Rightley, S. Plasma physics of extreme astrophysical environments. Rep. Prog. Phys. 77, 036902 (2014).

    Article  ADS  Google Scholar 

  6. Wistisen, T. N., Di Piazza, A., Knudsen, H. V. & Uggerhøj, U. I. Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. 9, 795 (2018).

    Article  ADS  Google Scholar 

  7. Nielsen, C. F. et al. Precision measurement of trident production in strong electromagnetic fields. Phys. Rev. Lett. 130, 071601 (2023).

    Article  ADS  Google Scholar 

  8. Gonoskov, A., Blackburn, T. G., Marklund, M. & Bulanov, S. S. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 94, 045001 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  9. Yakimenko, V. et al. Prospect of studying nonperturbative QED with beam-beam collisions. Phys. Rev. Lett. 122, 190404 (2019).

    Article  ADS  Google Scholar 

  10. Sauter, F. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs. Z. Phys. 69, 742–764 (1931).

    Article  ADS  Google Scholar 

  11. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article  MathSciNet  Google Scholar 

  12. Yoon, J. W. et al. Realization of laser intensity over 1023 W/cm2. Optica 8, 630–635 (2021).

    Article  ADS  Google Scholar 

  13. Bula, C. et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116–3119 (1996).

    Article  ADS  Google Scholar 

  14. Danson, C. N. et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 7, e54 (2019).

    Article  Google Scholar 

  15. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  16. Sarri, G. et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014).

    Article  ADS  Google Scholar 

  17. Yan, W. et al. High-order multiphoton Thomson scattering. Nat. Photonics 11, 514–520 (2017).

    Article  Google Scholar 

  18. Cole, J. M. et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018).

    MathSciNet  Google Scholar 

  19. Poder, K. et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004 (2018).

    Google Scholar 

  20. Sung, J. H. et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 42, 2058–2061 (2017).

    Article  ADS  Google Scholar 

  21. Ritus, V. I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497–617 (1985).

    Article  Google Scholar 

  22. Di Piazza, A. et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation. Phys. Rev. A 98, 012134 (2018).

    Article  ADS  Google Scholar 

  23. Yang, X. et al. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question. Sci. Rep. 7, 43910 (2017).

    Article  ADS  Google Scholar 

  24. Cipiccia, S. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871 (2011).

    Article  Google Scholar 

  25. Amaro, Ó. & Marija, V. Optimal laser focusing for positron production in laser-electron scattering. New J. Phys. 23, 115001 (2021).

    Article  ADS  Google Scholar 

  26. Albert, F. & Thomas, A. G. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 58, 103001 (2016).

    Article  ADS  Google Scholar 

  27. Placzek, W. et al. Gamma factory at CERN—novel research tools made of light. Acta Phys. Pol. B 50, 1191 (2019).

    Article  ADS  Google Scholar 

  28. Blackburn, T. G. & Marklund, M. Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ-rays. Plasma Phys. Control. Fusion 60, 054009 (2018).

    Article  ADS  Google Scholar 

  29. Burke, D. L. et al. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626–1629 (1997).

    Article  Google Scholar 

  30. Mirzaie, M. et al. Demonstration of self-truncated ionization injection for GeV electron beams. Sci. Rep. 5, 14659 (2015).

    Article  ADS  Google Scholar 

  31. Kim, H. T. et al. Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses. Sci. Rep. 7, 10203 (2017).

    Article  ADS  Google Scholar 

  32. Hojbota, C. I. et al. Accurate single-shot measurement technique for the spectral distribution of GeV electron beams from a laser wakefield accelerator. AIP Adv. 9, 085229 (2019).

    Article  ADS  Google Scholar 

  33. Kim, D. Y. et al. Optical synchronization technique for all-optical Compton scattering. Rev. Sci. Instrum. 93, 113001 (2022).

    Article  ADS  Google Scholar 

  34. Fabjan, C. W. & Fabiola, G. Calorimetry for particle physics. Rev. Mod. Phys. 75, 1243–1286 (2003).

    Article  Google Scholar 

  35. Hojbota, C. I. et al. High-energy betatron source driven by a 4-PW laser with applications to non-destructive imaging. Eur. Phys. J. A 59, 247 (2023).

    Article  ADS  Google Scholar 

  36. Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    ADS  Google Scholar 

  37. Behm, K. T. et al. A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Rev. Sci. Instrum. 89, 113303 (2018).

    Article  ADS  Google Scholar 

  38. Haden, D. et al. High energy X-ray Compton spectroscopy via iterative reconstruction. Nucl. Instrum. Methods Phys. Res. A 951, 163032 (2020).

    Article  Google Scholar 

  39. Nikishov, A. I. & Ritus, V. I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field. Sov. Phys. JETP 25, 1135 (1967).

    ADS  Google Scholar 

  40. Baier, V. & Katkov, V. Quantum effects in magnetic bremsstrahlung. Phys. Lett. A 25, 492–493 (1967).

    Article  ADS  Google Scholar 

  41. Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A. & Silva, L. O. All-optical radiation reaction at 1021 W/cm2. Phys. Rev. Lett. 113, 134801 (2014).

    Article  ADS  Google Scholar 

  42. Amaro, O. & Vranic, M. QScatter: numerical framework for fast prediction of particle distributions in electron-laser scattering. Plasma Phys. Control. Fusion 66, 045006 (2024).

    Article  ADS  Google Scholar 

  43. Fonseca, R. A. et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Proc. Computational Science — ICCS 2002. Lecture Notes in Computer Science Vol. 2331 (eds Sloot, P. M. A. et al.) 342–351 (Springer, 2002).

  44. Vranic, M., Grismayer, T., Fonseca, R. A. & Silva, L. O. Quantum radiation reaction in head-on laser-electron beam interaction. New J. Phys. 18, 073035 (2016).

    Article  ADS  Google Scholar 

  45. Vranic, M., Klimo, O., Korn, G. & Weber, S. Multi-GeV electron–positron beam generation from laser-electron scattering. Sci. Rep. 8, 4702 (2018).

    Article  ADS  Google Scholar 

  46. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the skilful petawatt laser operation and target area management by the CoReLS technical staff. Some of the computational works for this research were performed on the IBS Supercomputer, Aleph, in the IBS Research Solution Center. We acknowledge PRACE for granting access to MareNostrum in BSC, Spain. This work was supported primarily by the Institute for Basic Science under IBS-R012-D1. Additional support was provided by the UQBF operation programme (140011) of APRI/GIST and Portuguese Science Foundation (FCT) grants nos. CEECIND/01906/2018, PTDC/FIS-PLA/3800/2021 and FCT/UI/BD/153735/2022.

Author information

Authors and Affiliations

Authors

Contributions

C.H.N. and J.H.S. conceived the project. M.M., C.I.H., D.Y.K., T.G.P., H.W.L., J.W.Y., S.K.L., Y.J.R. and J.H.S. performed experiments and data collection. M.M., C.I.H., D.Y.K., C.M.K., Y.J.R., K.Y.K. and C.H.N. analysed experimental data. V.B.P., M.V. and Ó.A. carried out simulations and analytical calculations. M.M., C.I.H., V.B.P., C.M.K., M.V., K.Y.K., J.H.S. and C.H.N. wrote the paper, which was reviewed by all authors.

Corresponding authors

Correspondence to Jae Hee Sung or Chang Hee Nam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Stepan Bulanov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Table 1, containing full information for selected shots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaie, M., Hojbota, C.I., Kim, D.Y. et al. All-optical nonlinear Compton scattering performed with a multi-petawatt laser. Nat. Photon. 18, 1212–1217 (2024). https://doi.org/10.1038/s41566-024-01550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01550-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing