Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Passive broadband Faraday isolator for hybrid integration to photonic circuits without lens and external magnet

Abstract

Optical isolation based on a non-reciprocal effect is crucial for proper operation of several high-performance photonic devices such as in telecommunications, light detection and ranging, and even quantum platforms. The magneto-optical Faraday rotation is the most commonly used non-reciprocal effect as it offers unique advantages, including broadband operation, wide input optical power range, low insertion losses and high optical isolation, but it is currently not conducive to miniaturization. Two major impediments hinder the direct integration of Faraday isolators into photonic chips: the need for bulky external magnets and the challenging fabrication of low-loss waveguides that would eliminate the need for free-space coupling optics. Here we have addressed both challenges using a new femtosecond laser writing technique to create waveguides within the bulk of latched bismuth-doped iron garnet slabs without altering its magneto-optic functionality. As a result, we have achieved a Faraday rotator waveguide exhibiting <0.15 dB insertion loss with a figure of merit of 346° dB−1. By interposing this Faraday rotator between two 30-μm-thick polarizers, we further demonstrate a miniaturized optical isolator waveguide with >25 dB isolation ratio and <1.5 dB insertion loss over the entire optical telecom C-band for hybrid integration to photonic circuits without lenses and external magnet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Faraday rotator waveguide fabrication without altering the magneto-optic functionality.
Fig. 2: Faraday isolator performances operating without external magnets.
Fig. 3: Preliminary results on the singulation and laser welding of our isolator.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Any additional information can be obtained from the corresponding author on reasonable request.

References

  1. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    ADS  MATH  Google Scholar 

  2. Ren, S. Y. et al. Single-photon non-reciprocity with an integrated magneto-optical isolator. Laser Photon. Rev. 16, 2100595 (2022).

    ADS  MATH  Google Scholar 

  3. Okamura, Y., Ishida, M. & Yamamoto, S. Magnetooptic rib waveguides in YIG: an experiment. Appl. Opt. 23, 124–126 (1984).

    ADS  MATH  Google Scholar 

  4. Pross, E., Tolksdorf, W. & Dammann, H. Yttrium iron garnet single-mode buried channel waveguides for waveguide isolators. Appl. Phys. Lett. 52, 682–684 (1988).

    ADS  Google Scholar 

  5. Wolfe, R., Lieberman, R. A., Fratello, V. J., Scotti, R. E. & Kopylov, N. Etch-tuned ridged waveguide magneto-optic isolator. Appl. Phys. Lett. 56, 426–428 (1990).

    ADS  Google Scholar 

  6. Mizumoto, T. & Naito, Y. Non-reciprocal propagation characteristics of YIG thin film. IEEE Trans. Microw. Theory Tech. 30, 922–925 (1982).

    ADS  MATH  Google Scholar 

  7. Okamura, Y., Negami, T. & Yamamoto, S. Integrated optical isolator and circulator using non-reciprocal phase shifters: a proposal. Appl. Opt. 23, 1886–1889 (1984).

    ADS  MATH  Google Scholar 

  8. Du, Q. et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio. ACS Photon. 5, 5010–5016 (2018).

    MATH  Google Scholar 

  9. Mizumoto, T., Oochi, K., Harada, T. & Naito, Y. Measurement of optical non-reciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator. J. Light. Technol. 4, 347–352 (1986).

    ADS  Google Scholar 

  10. Bi, L., Hu, J., Dionne, G. F., Kimerling, L. & Ross, C. A. Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip non-reciprocal photonic devices. In Integrated Optics: Devices, Materials, and Technologies XV 7941, 28–37 (SPIE, 2011).

  11. Sun, X. Y. et al. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS Photon. 2, 856–863 (2015).

    MATH  Google Scholar 

  12. Zhang, C., Dulal, P., Stadler, B. J. & Hutchings, D. C. Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seedlayer-free garnet. Sci. Rep. 7, 5820 (2017).

    ADS  Google Scholar 

  13. Mizumoto, T., Baets, R. & Bowers, J. E. Optical non-reciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials. MRS Bull. 43, 419–424 (2018).

    ADS  Google Scholar 

  14. Pintus, P. et al. Broadband TE optical isolators and circulators in silicon photonics through Ce:YIG bonding. J. Light. Technol. 37, 1463–1473 (2019).

    ADS  MATH  Google Scholar 

  15. Shoji, Y. & Mizumoto, T. Silicon waveguide optical isolator with directly bonded magneto-optical garnet. Appl. Sci. 9, 609 (2019).

    Google Scholar 

  16. Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. W. & Osgood, R. M. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    ADS  Google Scholar 

  17. Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Quantum Electron. 22, 271–278 (2016).

    MATH  Google Scholar 

  18. Stadler, B. J. & Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photon. J. 6, 1–15 (2013).

    MATH  Google Scholar 

  19. Srinivasan, K. & Stadler, B. J. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics. Opt. Mater. Express 12, 697–716 (2022).

    ADS  Google Scholar 

  20. Shoji, Y. & Mizumoto, T. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 15, 014602 (2014).

    MATH  Google Scholar 

  21. Srinivasan, K. & Stadler, B. J. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review. Opt. Mater. Express 8, 3307–3318 (2018).

    ADS  MATH  Google Scholar 

  22. Yamaguchi, R., Shoji, Y. & Mizumoto, T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input. Opt. Express 26, 21271–21278 (2018).

    ADS  MATH  Google Scholar 

  23. Ghosh, S. et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits. IEEE Photon. J. 5, 6601108–6601108 (2013).

    ADS  Google Scholar 

  24. Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473–478 (2019).

    ADS  MATH  Google Scholar 

  25. Huang, D., Pintus, P. & Bowers, J. E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon. Opt. Mater. Express 8, 2471–2483 (2018).

    ADS  MATH  Google Scholar 

  26. Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7, 1555–1562 (2020).

    ADS  MATH  Google Scholar 

  27. Levy, M. et al. Integrated optical isolators with sputter-deposited thin-film magnets. IEEE Photon. Technol. Lett. 8, 903–905 (1996).

    ADS  MATH  Google Scholar 

  28. Huang, D. et al. Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range. Opt. Lett. 42, 4901–4904 (2017).

    ADS  MATH  Google Scholar 

  29. Huang, D. et al. Dynamically reconfigurable integrated optical circulators. Optica 4, 23–30 (2017).

    ADS  Google Scholar 

  30. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    ADS  Google Scholar 

  31. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    MATH  Google Scholar 

  32. Kim, S., Sohn, D. B., Peterson, C. W. & Bahl, G. On-chip optical non-reciprocity through a synthetic Hall effect for photons. APL Photon. 6, 011301 (2021).

    ADS  Google Scholar 

  33. Dostart, N., Gevorgyan, H., Onural, D. & Popović, M. A. Optical isolation using microring modulators. Opt. Lett. 46, 460–463 (2021).

    ADS  Google Scholar 

  34. Kim, J. H., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Google Scholar 

  35. Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    ADS  MATH  Google Scholar 

  36. Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    ADS  Google Scholar 

  37. Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    ADS  Google Scholar 

  38. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven non-reciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    ADS  Google Scholar 

  39. Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    ADS  MATH  Google Scholar 

  40. Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).

    ADS  MATH  Google Scholar 

  41. White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).

    ADS  MATH  Google Scholar 

  42. Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic non-reciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    ADS  MATH  Google Scholar 

  43. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    ADS  MATH  Google Scholar 

  44. Abbott, R. R., Fratello, V. J., Licht, S. J. & Mnushkina, I. Article comprising a Faraday rotator that does not require a bias magnet. US patent 6,770,223 (2004).

  45. Karki, D., Stenger, V., Pollick, A. & Levy, M. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. J. Appl. Phys. 121, 23 (2017).

    Google Scholar 

  46. Karki, D., Stenger, V., Pollick, A. & Levy, M. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers. J. Light. Technol. 38, 827–833 (2020).

    ADS  Google Scholar 

  47. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    ADS  MATH  Google Scholar 

  48. Lapointe, J. et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl. 9, 64 (2020).

    ADS  MATH  Google Scholar 

  49. Fakhrul, T. et al. High figure of merit magneto-optical Ce- and Bi-substituted terbium iron garnet films integrated on Si. Adv. Opt. Mater. 9, 2100512 (2021).

    Google Scholar 

  50. Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1–25 (2023).

    MATH  Google Scholar 

  51. Tan, J. Y., Wu, S. X., Salih, Y., Li, C. & Lo, G. Q. Foundry’s perspective on laser and SOA module integration with silicon photonics. J. Light. Technol. 42, 1062 (2023).

    MATH  Google Scholar 

  52. Magneto-Optic LPE Garnet Faraday Rotator Crystals. https://www.coherent.com/content/dam/coherent/site/en/resources/datasheet/optics/magneto-optic-lpe-garnet-faraday-rotator-crystals-ds.pdf (II-VI Inc., 2023).

  53. Shah, L., Arai, A. Y., Eaton, S. M. & Herman, P. R. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13, 1999–2006 (2005).

    ADS  Google Scholar 

  54. Chambonneau, M. et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photon. Rev. 15, 2100140 (2021).

    ADS  Google Scholar 

  55. Chen, F. & de Aldana, J. V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev. 8, 251–275 (2014).

    ADS  Google Scholar 

  56. Lapointe, J. et al. Laser writing of 3D waveguides up to long-wave infrared: sensing and high refractive index contrast challenges. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII 11988, 78–93 (SPIE, 2022).

  57. Bérubé, J. P., Lapointe, J., Dupont, A., Bernier, M. & Vallée, R. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett. 44, 37–40 (2019).

    ADS  Google Scholar 

  58. Dupont, A., Lapointe, J., Pouliot, S. & Vallée, R. From near-UV to long-wave infrared waveguides inscribed in barium fluoride using a femtosecond laser. Opt. Lett. 46, 3925–3928 (2021).

    ADS  Google Scholar 

  59. Peng, Y. P. et al. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Sci. Rep. 5, 18365 (2015).

    ADS  Google Scholar 

  60. Caulier, O., Le Coq, D., Bychkov, E. & Masselin, P. Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation. Opt. Lett. 38, 4212–4215 (2013).

    ADS  Google Scholar 

  61. Zhang, Y. J. et al. Double line and tubular depressed cladding waveguides written by femtosecond laser irradiation in PTR glass. Opt. Mater. Express 7, 2626–2635 (2017).

    ADS  MATH  Google Scholar 

  62. Salamu, G., Jipa, F., Zamfirescu, M. & Pavel, N. Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique. Opt. Mater. Express 4, 790–797 (2014).

    ADS  Google Scholar 

  63. Marcuse, D. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977).

    ADS  MATH  Google Scholar 

  64. Santos, S. N. C. D. et al. Femtosecond-laser fabrication of magneto-optical waveguides in terbium doped CaLiBO glass. Opt. Mater. 126, 112197 (2022).

    MATH  Google Scholar 

  65. Polarcor™ UltraThin™ Glass Polarizers Product Information. https://www.corning.com/media/worldwide/csm/documents/Polarcor%E2%84%A2%20Ultrathin%E2%84%A2%20Product%20Information%20Sheet.pdf (Corning Inc., 2005).

  66. Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).

    ADS  MATH  Google Scholar 

  67. Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    ADS  MATH  Google Scholar 

  68. Hélie, D., Gouin, S. & Vallée, R. Assembling an endcap to optical fibers by femtosecond laser welding and milling. Opt. Mater. Express 3, 1742–1754 (2013).

    ADS  MATH  Google Scholar 

  69. Lapointe, J., Bérubé, J. P., Dupont, A., Bellec, M. & Vallée, R. Modified astigmatic beam technique for laser writing. Appl. Opt. 61, 2333–2337 (2022).

    ADS  Google Scholar 

  70. Roberts, A. et al. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy. Opt. Lett. 27, 2061–2063 (2002).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

This research project was funded by the Evolution of Cloud Services in the Quebec-Ontario Corridor for Research and Innovation (ENCQOR) programme under contract reference number IBM-Codev-AEPONYX-1. We acknowledge the contribution of their funding partners IBM CANADA Ltd. and AEPONYX Enterprises Inc. for their valuable and seeding support. Special thanks are addressed to B. A. Janta-Polczynski from IBM for the seminal discussions and ideas, to D. Menard from Polytechnique Montreal for the discussions on magnetism, to S. Subramanian from Coherent-II-VI for the valuable insight and perspective into the BIG material properties, and to S. Gagnon for his valuable technical expertise.

Author information

Authors and Affiliations

Authors

Contributions

J.L., C.C. and R.V. designed the optical isolator. J.L. and R.V. developed the laser writing technique. J.L. performed numerical simulations. J.L. built the experimental set-up. J.L. and A.D. fabricated the waveguides and optical isolators. J.L. and A.D. conducted the optical measurements. All authors contributed to the analysis of the results. J.L., C.C. and R.V. contributed to writing the paper. R.V. and C.C. supervised the project.

Corresponding author

Correspondence to Jerome Lapointe.

Ethics declarations

Competing interests

C.C. is employed by AEPONYX Enterprises Inc., an active funder of the project. The work presented in this paper has been filed for provisional US patent application under number 63/363,730 and for Patent Cooperation Treaty application under number CA2023050273 by AEPONYX Enterprises Inc., with J.L., C.C., P. Babin, D. Michel, R.V., M. Bérard and A. Fekecs as inventors. The patent is currently pending national entry phase. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Sections 1–4.

Supplementary Video 1

Video of a 1,550 nm laser being injected into a waveguide inscribed by a femtosecond laser in a BIG slab using an optical fibre, demonstrating strong optical mode confinement.

Supplementary Video 2

Video of a BIG slab with magnetic domains observed through two polarizers offset by 45°. By moving a magnet around the piece of BIG, the movement of the magnetic domains is observed. When the magnet is brought within a few millimetres above the slab, the BIG is latched, and the magnetic domains are no longer visible.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapointe, J., Coia, C., Dupont, A. et al. Passive broadband Faraday isolator for hybrid integration to photonic circuits without lens and external magnet. Nat. Photon. 19, 248–257 (2025). https://doi.org/10.1038/s41566-024-01601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01601-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing