Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical microcombs for ultrahigh-bandwidth communications

Abstract

Microcombs—optical frequency combs generated by nonlinear integrated microcavity resonators—have the potential to offer the full capability of their benchtop counterparts, but in an integrated footprint. They have enabled breakthroughs in spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology, optical neuromorphic processing and more. One of their most successful applications is in optical-fibre communications, where they have formed the basis for massively parallel ultrahigh-capacity multiplexed data transmission. Innovative approaches have been used in recent years to phase-lock or mode-lock different types of microcombs, from dissipative Kerr solitons to dark solitons, soliton crystals and others, and this has enabled their use as sources for advanced coherent modulation-format optical communications systems, which have achieved ultrahigh data capacity bit rates breaking the petabit-per-second barrier. Here we review this new and exciting field, chronicling the progress and highlighting the challenges and opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of optical microcombs showing timelines of the reports of optical communications based on microcomb chips.
Fig. 2: Evolution of optical communications with benchtop combs and microcombs.
Fig. 3: Recent demonstrations of optical communication systems based on microcombs.
Fig. 4: Recent demonstrations of an optical communications system based on microcombs.
Fig. 5: Potential applications of optical microcombs in real-world systems for different length scales ranging from 10,000 km down to 100 μm.

Similar content being viewed by others

References

  1. Winzer, P. J. & Neilson, D. T. From scaling disparities to integrated parallelism: a decathlon for a decade. J. Lightwave Technol. 35, 1099–1115 (2017).

    Article  ADS  Google Scholar 

  2. Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fibre-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).

    Article  ADS  Google Scholar 

  3. Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    Article  ADS  Google Scholar 

  4. Hall, J. L. Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  ADS  Google Scholar 

  5. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  Google Scholar 

  6. Puttnam, B. J. et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fibre and wideband optical comb. In Proc. 2015 European Conference on Optical Communication (ECOC) 1–3 https://doi.org/10.1109/ECOC.2015.7341685 (IEEE, 2015).

  7. Rademacher, G. et al. Highly spectral efficient C + L-band transmission over a 38-core-3-mode fibre. J. Lightwave Technol. 39, 1048–1055 (2021).

    Article  ADS  Google Scholar 

  8. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  9. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  11. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  12. Sun, Y. et al. Applications of optical micro-combs. Adv. Opt. Photon. 15, 86–175 (2023).

    Article  Google Scholar 

  13. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  14. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    Article  ADS  Google Scholar 

  15. Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon. 8, 375–380 (2014).

    Article  ADS  Google Scholar 

  16. Fulop, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    Article  ADS  Google Scholar 

  17. Fujii, S. et al. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels. Opt. Express 30, 1351–1364 (2022).

    Article  ADS  Google Scholar 

  18. Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).

    Article  ADS  Google Scholar 

  19. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  20. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  21. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  ADS  Google Scholar 

  22. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  23. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  24. Tan, M. et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv. Phys. X 6, 1838946 (2021).

    Google Scholar 

  25. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  26. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photon. 13, 384–389 (2019).

    Article  ADS  Google Scholar 

  27. Lihachev, G. et al. Platicon microcomb generation using laser self-injection locking. Nat. Commun. 13, 1771 (2022).

    Article  ADS  Google Scholar 

  28. Peccianti, M. et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat. Commun. 3, 765 (2012).

    Article  ADS  Google Scholar 

  29. Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    Article  ADS  Google Scholar 

  30. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  31. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Article  Google Scholar 

  32. Wang, P.-H. et al. Observation of correlation between route to formation, coherence, noise and communication performance of Kerr combs. Opt. Express 20, 29284–29295 (2012).

    Article  ADS  Google Scholar 

  33. Matsko, A. A. et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

    Article  ADS  Google Scholar 

  34. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  35. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  36. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Article  ADS  Google Scholar 

  37. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    Article  ADS  Google Scholar 

  38. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  39. Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).

    Article  ADS  Google Scholar 

  40. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  41. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  Google Scholar 

  42. Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).

    Article  ADS  Google Scholar 

  43. Cutrona, A. et al. High parametric efficiency in laser cavity-soliton microcombs. Opt. Express 30, 39816–39825 (2022).

    Article  ADS  Google Scholar 

  44. Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 17, 992–999 (2023).

    Article  ADS  Google Scholar 

  45. Boggio, J. M. C. et al. Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling. Nat Commun. 13, 1292 (2022).

    Article  ADS  Google Scholar 

  46. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  Google Scholar 

  47. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2021).

    Article  ADS  Google Scholar 

  48. Suh, M.-G. & Vahala, K. Gigahertz-repetition-rate soliton microcombs. Optica 5, 65–66 (2018).

    Article  ADS  Google Scholar 

  49. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  50. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  ADS  Google Scholar 

  51. Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article  ADS  Google Scholar 

  52. Luke, K., Dutt, A., Poitras, C. B. & Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013).

    Article  ADS  Google Scholar 

  53. El Dirani, H. et al. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics. Appl. Phys. Lett 113, 081102 (2018).

    Article  ADS  Google Scholar 

  54. Frigg, A. et al. Optical frequency comb generation with low temperature reactive sputtered silicon nitride waveguides. APL Photon. 5, 011302 (2019).

    Article  ADS  Google Scholar 

  55. Rebolledo-Salgado, I. et al. Platicon dynamics in photonic molecules. Commun. Phys. 6, 303 (2023).

    Article  Google Scholar 

  56. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photon. 15, 305–310 (2021).

    Article  ADS  Google Scholar 

  57. Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

    Article  Google Scholar 

  58. Kim, B. Y. et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett. 44, 4475–4478 (2019).

    Article  ADS  Google Scholar 

  59. Rebolledo-Salgado, I. et al. Photonic molecule microcombs at 50 GHz repetition rate. In Conference on Lasers and Electro-Optics, Technical Digest Series Paper SW4O.8 (Optica Publishing Group, 2022).

  60. Wang, W. et al. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett. 43, 2002–2005 (2018).

    Article  ADS  Google Scholar 

  61. Nguyen, T. G. et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express 23, 22087 (2015).

    Article  ADS  Google Scholar 

  62. Wu, J. et al. RF photonics: an optical micro-combs’ perspective. IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).

    Article  Google Scholar 

  63. Xu, X. et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source. OSA Photonics Research Journal, Special Issue on Integrated Nonlinear Photonics 6, B30–B36 (2018).

    Google Scholar 

  64. Xu, X. et al. 11 TOPs photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  65. Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071–1077 (2019).

    Article  Google Scholar 

  66. Murray, C. E. et al. Investigating the thermal robustness of soliton crystal microcombs. Opt. Express 31, 37749–37762 (2023).

    Article  ADS  Google Scholar 

  67. Mazur, M. et al. High spectral efficiency coherent superchannel transmission with soliton microcombs. J. Lightwave Technol. 39, 4367–4373 (2021).

    Article  ADS  Google Scholar 

  68. Nakazawa, M., Yamamoto, T. & Tamura, K. R. 1.28 Tbit/s–70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electron. Lett. 36, 2027–2029 (2000).

    Article  ADS  Google Scholar 

  69. Weber, H. G. et al. Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission. In Proc. IET Conference, v6:3-v6:3 (IET, 2005); https://doi.org/10.1049/cp:20050848

  70. Hu, H. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photon. 12, 469–473 (2018).

    Article  ADS  Google Scholar 

  71. Hillerkuss, D. et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photon. 5, 364–371 (2011).

    Article  ADS  Google Scholar 

  72. Hillerkuss, D. et al. Single-laser 32.5 Tbit/s Nyquist WDM transmission. J. Opt. Commun. Netw. 4, 715–723 (2012).

    Article  Google Scholar 

  73. Ataie, V. et al. Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer. J. Lightwave Technol. 33, 694–699 (2015).

    Article  ADS  Google Scholar 

  74. Anandarajah, P. M. et al. Generation of coherent multicarrier signals by gain switching of discrete mode lasers. IEEE Photon. J. 3, 112–122 (2011).

    Article  ADS  Google Scholar 

  75. Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article  ADS  Google Scholar 

  76. Verolet, T. et al. Mode locked laser phase noise reduction under optical feedback for coherent DWDM communication. J. Lightwave Technol. 38, 5708–5715 (2020).

    Article  ADS  Google Scholar 

  77. Hermans, A., Van Gasse, K. & Kuyken, B. On-chip optical comb sources. APL Photon. 7, 100901 (2022).

    Article  ADS  Google Scholar 

  78. Corcoran, B. & Prayoonyong, C. A perspective on optical microcomb distillation: a tool to break power barriers for tiny rainbows. APL Photon. 9, 010903 (2024).

    Article  ADS  Google Scholar 

  79. Prayoonyong, C. & Corcoran, B. Quantifying the impact of frequency comb distillation on comb-based optical communications systems. J. Lightwave Technol. 41, 3034–3045 (2023).

    Article  ADS  Google Scholar 

  80. Corcoran, B. et al. Ultra-high bandwidth network transmission field trial using a soliton-crystal micro-comb source. In Proc. European Conference on Optical Communications (ECOC) (IET, 2019); https://doi.org/10.1049/cp.2019.0882

  81. Torres-Company, V., Schröder, J. & Andrekson, P. A. Laser frequency combs for coherent optical communications. J. Lightwave Technol. 37, 1663–1670 (2019).

    Article  ADS  Google Scholar 

  82. Marin-Palomo, P. et al. Performance of chip-scale optical frequency comb generators in coherent WDM communications. Opt. Express 28, 12897–12910 (2020).

    Article  ADS  Google Scholar 

  83. Lundberg, L. et al. Phase-coherent lightwave communications with frequency combs. Nat. Commun. 11, 201 (2020).

    Article  ADS  Google Scholar 

  84. Mazur, M., Schroder, J., Karlsson, M. & Andrekson, P. A. Joint superchannel digital signal processing for effective inter-channel interference cancellation. J. Lightwave Technol. 38, 5676–5684 (2020).

    Article  ADS  Google Scholar 

  85. Mazur, M. et al. Optical frequency comb modulator for multichannel systems. Proc. ECOC https://doi.org/10.1049/cp.2019.1029 (2019).

    Article  Google Scholar 

  86. Drayss, D. et al. Optical Arbitrary Waveform Generation and Measurement (OAWG/OAWM) enabling 320 GBd 32QAM transmission. In Proc. CLEO 2023, Technical Digest Series Paper STh5C.8 (Optica Publishing Group, 2023); https://doi.org/10.1364/CLEO_SI.2023.STh5C.8

  87. Drayss, D. et al. Non-sliced optical arbitrary waveform measurement (OAWM) using soliton microcombs. Optica 10, 888–896 (2023).

    Article  ADS  Google Scholar 

  88. Mocker, H. W. & Collins, R. J. Mode competition and self-injection locking effects in a Q-switched ruby laser. Appl. Phys. Lett. 7, 270–273 (1965).

    Article  ADS  Google Scholar 

  89. Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article  ADS  Google Scholar 

  90. Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).

    Article  Google Scholar 

  91. Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    Article  ADS  Google Scholar 

  92. Wildi, T., Ulanov, A., Englebert, N., Voumard, T. & Herr, T. Sideband injection locking in microresonator frequency combs. APL Photon. 8, 120801 (2023).

    Article  ADS  Google Scholar 

  93. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  94. Li, J. et al. Efficiency of pulse pumped soliton microcombs. Optica 9, 231–239 (2022).

    Article  ADS  Google Scholar 

  95. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article  ADS  Google Scholar 

  96. Prayoonyong, C. et al. Frequency comb distillation for optical superchannel transmission. J. Lightwave Technol. 39, 7383–7392 (2021).

    Google Scholar 

  97. Jia, S. et al. 150 Gbit/s 1 km high-sensitivity FSO communication outfield demonstration based on a soliton microcomb. Opt. Express 30, 35300–35310 (2022).

    Article  ADS  Google Scholar 

  98. Dochhan, A. et al. 13.16 Tb/s free-space optical transmission over 10.45 km for geostationary satellite feeder links. In Photonic Networks; 20th ITG-Symposium, 12–14 (2019).

  99. Amazons Project Kuiper Completes Successful Tests of Optical Mesh Network in Low Earth Orbit. Amazon (14 December 2023); https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-kuiper-oisl-space-laser-december-2023-update

  100. TeraByte InfraRed Delivery (NASA, 2017); https://www.nasa.gov/wp-content/uploads/2017/10/tbird_fact_sheet_v2.pdf

  101. Murphy, K. Lasers Light the Way for Artemis II Moon Mission. ESC, LEMNOS, Artemis, Lasercommunication (3 June 2021); https://esc.gsfc.nasa.gov/news/Lasers_Light_the_Way_for_Artemis_II_Moon_Mission

  102. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article  ADS  Google Scholar 

  103. Guo, Y. et al. Submarine optical fiber communication provides an unrealized deep-sea observation network. Sci. Rep. 13, 15412 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) Centre of Excellence in Optical Microcombs for Breakthrough Science (no. CE230100006), and the Danish National Research Foundation (DNRF) Centre of Excellence, SPOC (Silicon Photonics for Optical Communications, DNRF123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Moss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Stefan Wabnitz, Anthony Rizzo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corcoran, B., Mitchell, A., Morandotti, R. et al. Optical microcombs for ultrahigh-bandwidth communications. Nat. Photon. 19, 451–462 (2025). https://doi.org/10.1038/s41566-025-01662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01662-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing