Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable nanophotonic devices and cavities based on a two-dimensional magnet

Abstract

Central to the field of nanophotonics is the ability to engineer the flow of light through nanoscale structures. These structures often have permanent working spectral ranges and optical properties that are fixed during fabrication. Quantum materials, with their correlated and intertwined degrees of freedom, offer a promising avenue for dynamically controlling photonic devices without altering their physical structure. Here we fabricate photonic crystal slabs from CrSBr, a van der Waals antiferromagnetic semiconductor, and demonstrate in situ control over their optical properties. Leveraging the combination of the exceptionally large refractive index of CrSBr near its excitonic resonances and its tunability via external fields, we achieve precise manipulation of photonic modes at near-visible and infrared wavelengths, showcasing a new paradigm for nanophotonic device design. The resulting guided resonances of the photonic crystal are tightly packed in the spectrum with very small mode volumes, are highly tunable via external magnetic fields and exhibit high Q factors exceeding 1,200. These resonances self-hybridize with the excitonic degrees of freedom, resulting in intrinsic strong light–matter coupling. Our findings underscore the potential of quantum materials for developing in situ tunable photonic elements and cavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photonic resonances in PhC slabs made of CrSBr.
Fig. 2: Self-hybridized exciton–polaritons in CrSBr photonic crystal slabs.
Fig. 3: In situ tunability of the photonic modes.
Fig. 4: Strongly tunable photonic resonances in the near-visible range.

Similar content being viewed by others

Data availability

Raw experimental data used in the article are available via Harvard Dataverse at https://doi.org/10.7910/DVN/1NPBTC.

References

  1. Zhang, X. et al. Guiding of visible photons at the ångström thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).

    Article  Google Scholar 

  2. Sung, J. et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics 16, 792–797 (2022).

    Article  Google Scholar 

  3. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  Google Scholar 

  4. Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015).

    Article  Google Scholar 

  5. Munkhbat, B. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 11, 4604 (2020).

    Article  Google Scholar 

  6. Lin, H. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl. 9, 137 (2020).

    Article  Google Scholar 

  7. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article  Google Scholar 

  8. Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    Article  Google Scholar 

  9. Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article  Google Scholar 

  10. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  Google Scholar 

  11. Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

    Article  Google Scholar 

  12. Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article  Google Scholar 

  13. Laitz, M. et al. Uncovering temperature-dependent exciton–polariton relaxation mechanisms in hybrid organic-inorganic perovskites. Nat. Commun. 14, 2426 (2023).

    Article  Google Scholar 

  14. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article  Google Scholar 

  15. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  Google Scholar 

  16. Gibbs, H. M., Khitrova, G. & Koch, S. W. Exciton–polariton light–semiconductor coupling effects. Nat. Photonics 5, 273–273 (2011).

    Article  Google Scholar 

  17. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

    Article  Google Scholar 

  18. Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nat. Nanotechnol. 17, 1060–1064 (2022).

    Article  Google Scholar 

  19. Li, Q. et al. Two-dimensional magnetic exciton polariton with strongly coupled atomic and photonic anisotropies. Phys. Rev. Lett. 133, 266901 (2024).

    Article  Google Scholar 

  20. Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum. Nat. Mater. 22, 964–969 (2023).

    Article  Google Scholar 

  21. Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).

    Article  Google Scholar 

  22. Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article  Google Scholar 

  23. Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

    Article  Google Scholar 

  24. Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021).

    Article  Google Scholar 

  25. Viñas Boström, E., Sriram, A., Claassen, M. & Rubio, A. Controlling the magnetic state of the proximate quantum spin liquid α-RuCl3 with an optical cavity. npj Comput. Mater. 9, 202 (2023).

    Article  Google Scholar 

  26. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  Google Scholar 

  27. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article  Google Scholar 

  28. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  29. Bagani, K. et al. Imaging strain-controlled magnetic reversal in thin CrSBr. Nano Lett. 24, 13068–13074 (2024).

    Google Scholar 

  30. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

    Article  Google Scholar 

  31. Pawbake, A. et al. Magneto-optical sensing of the pressure driven magnetic ground states in bulk CrSBr. Nano Lett. 23, 9587–9593 (2023).

    Article  Google Scholar 

  32. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article  Google Scholar 

  33. Cham, T. M. J. et al. Anisotropic gigahertz antiferromagnetic resonances of the easy-axis van der Waals antiferromagnet CrSBr. Nano Lett. 22, 6716–6723 (2022).

    Article  Google Scholar 

  34. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article  Google Scholar 

  35. Ziebel, M. E. et al. CrSBr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24, 4319–4329 (2024).

    Article  Google Scholar 

  36. Rizzo, D. J. et al. Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 34, 2201000 (2022).

    Article  Google Scholar 

  37. Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023).

    Article  Google Scholar 

  38. Nessi, L., Occhialini, C. A., Demir, A. K., Powalla, L. & Comin, R. Magnetic field tunable polaritons in the ultrastrong coupling regime in CrSBr. ACS Nano 18, 34235–34243 (2024).

    Article  Google Scholar 

  39. Datta, B., Adak, P.C., Yu, S. et al. Magnon-mediated exciton–exciton interaction in a van der Waals antiferromagnet. Nat. Mater. https://doi.org/10.1038/s41563-025-02183-0 (2025).

  40. Shi, J. et al. Giant magneto-exciton coupling in 2D van der Waals CrSBr. Preprint at https://arxiv.org/abs/2409.18437v1 (2024).

  41. Barcons Ruiz, D. et al. Engineering high quality graphene superlattices via ion milled ultra-thin etching masks. Nat. Commun. 13, 6926 (2022).

    Article  Google Scholar 

  42. Demir, A. K. et al. Transferable optical enhancement nanostructures by gapless stencil lithography. Nano Lett. 24, 9882–9888 (2024).

    Article  Google Scholar 

  43. Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).

    Article  MathSciNet  Google Scholar 

  44. Wang, T. et al. Magnetically-dressed CrSBr exciton–polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).

    Article  Google Scholar 

  45. Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article  Google Scholar 

  46. Suárez-Forero, D. G. et al. Chiral flat-band optical cavity with atomically thin mirrors. Sci. Adv. 10, eadr5904 (2024).

    Article  Google Scholar 

  47. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article  Google Scholar 

  48. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    Article  Google Scholar 

  49. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  Google Scholar 

  50. Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, eabk1117 (2021).

    Article  Google Scholar 

  51. Vaidya, S., Benalcazar, W. A., Cerjan, A. & Rechtsman, M. C. Point-defect-localized bound states in the continuum in photonic crystals and structured fibers. Phys. Rev. Lett. 127, 023605 (2021).

    Article  Google Scholar 

  52. Zhang, T. et al. Magnetism and optical anisotropy in van der waals antiferromagnetic insulator CrOCl. ACS Nano 13, 11353–11362 (2019).

    Article  Google Scholar 

  53. Gu, P. et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking. ACS Nano 14, 1003–1010 (2020).

    Article  Google Scholar 

  54. Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).

    Article  Google Scholar 

  55. Guo, Q. et al. Colossal in-plane optical anisotropy in a two-dimensional van der Waals crystal. Nat. Photonics 18, 1170–1175 (2024).

    Article  Google Scholar 

  56. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article  Google Scholar 

  57. Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 15, 4735 (2024).

    Article  Google Scholar 

  58. Ergoktas, M. S. et al. Localized thermal emission from topological interfaces. Science 384, 1122–1126 (2024).

    Article  Google Scholar 

  59. He, L., Wu, J., Jin, J., Mele, E. J. & Zhen, B. Polaritonic Chern insulators in monolayer semiconductors. Phys. Rev. Lett. 130, 043801 (2023).

    Article  Google Scholar 

  60. Uemura, T. et al. Photonic topological phase transition induced by material phase transition. Sci. Adv. 10, eadp7779 (2024).

    Article  Google Scholar 

  61. Guddala, S. et al. Topological phonon–polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  Google Scholar 

  62. Li, M. et al. Experimental observation of topological Z2 exciton–polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article  Google Scholar 

  63. Liu, W. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with M. Butun. This material is based upon work supported by the US Department of Energy, Office of Science National Quantum Information Science Research Center’s Co-design Center for Quantum Advantage (C2QA) under contract number DE-SC0012704 (R.C.). C2QA led in this research. This material is also based upon work sponsored in part by the US Army DEVCOM ARL Army Research Office through the MIT Institute for Soldier Nanotechnologies under Cooperative Agreement number W911NF-23-2-0121 (M.S.). This work was performed in part on the Raith VELION FIB-SEM in the MIT.nano Characterization Facilities (award number DMR-2117609) and in Fab.nano and Characterization.nano facilities at MIT.nano. A.K.D. acknowledges support from MathWorks Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.K.D., L.N. and R.C. conceived the project. A.K.D. performed the nanofabrication and carried out the experiments together with L.N., with help from C.A.O., under the supervision of R.C. S.V., supervised by M.S., and A.K.D. performed the simulations. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Riccardo Comin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alexander Khanikaev, Angel Rubio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Notes 1 and 2 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, A.K., Nessi, L., Vaidya, S. et al. Tunable nanophotonic devices and cavities based on a two-dimensional magnet. Nat. Photon. 19, 1006–1012 (2025). https://doi.org/10.1038/s41566-025-01712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01712-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing