Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanophotonics with multilayer van der Waals materials

Abstract

The field of nanophotonics requires high-quality materials for the fabrication of resonant structures that can confine light down to the nanoscale. Metallic nanostructures often used for this purpose exhibit high optical losses, so high-refractive-index dielectrics such as silicon (Si) and III–V semiconductors are widely used instead. Recently, layered materials, often referred to as ‘van der Waals materials’ for the forces holding atomic planes together in bulk crystals, have been introduced as alternative dielectric building blocks for nanophotonics. Compared to traditional semiconductors, these materials exhibit higher refractive indices and transparency in the visible and near-infrared favourable for compact waveguides; strong birefringence and large nonlinear optical coefficients attractive for nonlinear optics; and out-of-plane van der Waals adhesive forces enabling novel tuning techniques and heterointegration approaches for the realization of previously inaccessible photonic structures. Recently, these properties of quasi-bulk van der Waals materials (as opposed to their widely studied monolayers) have been applied in a variety of photonic structures and devices, which will be discussed here. We report on recent progress in utilizing layered materials in waveguiding, wavefront shaping, Purcell enhancement, quantum nanophotonics, lasing, nonlinear optics, and strong light–matter coupling, as well as offer a snapshot of future developments in hybrid and tunable nanophotonics, three-dimensional photonic structures, optical trapping, polariton devices and van der Waals integrated nanophotonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complex refractive indices, birefringence and χ(3) of representative vdW materials.
Fig. 2: Fabrication of nanophotonic structures in vdW materials and post-fabrication repositioning techniques.
Fig. 3: vdW materials for waveguiding, wavefront shaping and nonlinear optics applications.
Fig. 4: Weak light–matter coupling, lasing and strong light–matter coupling with vdW-material nanoresonators.
Fig. 5: Future applications of vdW-material nanophotonics.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  3. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  ADS  Google Scholar 

  5. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  Google Scholar 

  6. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  Google Scholar 

  7. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 686–695 (2016).

    Article  Google Scholar 

  8. Schneider, C., Glazov, M. M., Korn, T., Hofling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 9, 2695 (2018).

    Article  ADS  Google Scholar 

  9. Turunen, M. et al. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022).

    Article  Google Scholar 

  10. Li, M. et al. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article  ADS  Google Scholar 

  11. Munkhbat, B., Wrobel, P., Antosiewicz, T. J. & Shegai, T. O. Optical constants of several multilayer transition metal dichalcogenides measured by spectroscopic ellipsometry in the 300–1,700 nm range: high-index, anisotropy and hyperbolicity. ACS Photonics 9, 2398–2407 (2022).

    Article  Google Scholar 

  12. Zotev, P. G. et al. Van der Waals materials for applications in nanophotonics. Laser Photonics Rev. 17, 2200957 (2023).

    Article  ADS  Google Scholar 

  13. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  ADS  Google Scholar 

  14. Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019).

    Article  ADS  Google Scholar 

  15. Danielsen, D. R. et al. Super-resolution nanolithography of two-dimensional materials by anisotropic etching. ACS Appl. Mater. Interfaces 13, 41886–41894 (2021).

    Article  Google Scholar 

  16. Zotev, P. G. et al. Transition metal dichalcogenide dimer nanoantennas for tailored light-matter interactions. ACS Nano 16, 6493–6505 (2022).

    Article  Google Scholar 

  17. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    Article  ADS  Google Scholar 

  18. Arora, A. et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 8, 639 (2017).

    Article  ADS  Google Scholar 

  19. Wilson, J. & Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  ADS  Google Scholar 

  20. Liang, W. Y. Optical anisotropy in layer compounds. J. Phys. C Solid State Phys. 6, 551 (1973).

    Article  ADS  Google Scholar 

  21. Beal, A. R. & Hughes, H. P. Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C Solid State Phys. 12, 881–890 (1979).

    Article  ADS  Google Scholar 

  22. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  Google Scholar 

  23. Rah, Y., Jin, Y., Kim, S. & Yu, K. Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared. Opt. Lett. 44, 3797–3800 (2019).

    Article  ADS  Google Scholar 

  24. Grudinin, D. V. et al. Hexagonal boron nitride nanophotonics: a record-breaking material for the ultra-violet and visible spectral ranges. Mater. Horizons 10, 2427–2435 (2023).

    Article  Google Scholar 

  25. Isik, M., Tugay, E. & Gasanly, N. Optical properties of GaS crystals: combined study of temperature-dependent band gap energy and oscillator parameters. Indian J. Pure Appl. Phys. 55, 583–588 (2017).

    Google Scholar 

  26. Slavich, A. S. et al. Exploring van der Waals materials with high anisotropy: geometrical and optical approaches. Light Sci. Appl. 13, 68 (2024).

    Article  ADS  Google Scholar 

  27. Fang, M. et al. Layer-dependent dielectric permittivity of topological insulator Bi2Se3 thin films. Appl. Surf. Sci. 509, 144822 (2020).

    Article  Google Scholar 

  28. Nandi, S. et al. Unveiling local optical properties using nanoimaging phase mapping in high-index topological insulator Bi2Se3 resonant nanostructures. Nano Lett. 23, 11501–11509 (2023).

    Article  ADS  Google Scholar 

  29. Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. I. Group IVA: octahedral coordination. J. Phys. C 5, 3531 (1972).

    Article  ADS  Google Scholar 

  30. Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C 5, 3540 (1972).

    Article  ADS  Google Scholar 

  31. Piacentini, M., Khumalo, F. S., Olson, C. G., Anderegg, J. W. & Lynch, D. W. Optical transitions, XPS, electronic states in NiPS3. Chem. Phys. 65, 289–304 (1982).

    Article  Google Scholar 

  32. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  ADS  Google Scholar 

  33. Lee, S. Y., Jeong, T. Y., Jung, S. & Yee, K. J. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B Basic Res. 256, 1800417 (2019).

    Article  ADS  Google Scholar 

  34. Green, T. D. et al. Optical material anisotropy in high-index transition metal dichalcogenide Mie nanoresonators. Optica 7, 680–686 (2020).

    Article  ADS  Google Scholar 

  35. Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article  ADS  Google Scholar 

  36. Ermolaev, G. A. et al. Wandering principal optical axes in van der Waals triclinic materials. Nat. Commun. 15, 1552 (2024).

    Article  ADS  Google Scholar 

  37. Busschaert, S., Cavigelli, M., Khelifa, R., Jain, A. & Novotny, L. Transition metal dichalcogenide resonators for second harmonic signal enhancement. ACS Photonics 7, 2482–2488 (2020).

    Article  Google Scholar 

  38. Popkova, A. et al. Nonlinear exciton-Mie coupling in transition metal dichalcogenide nanoresonators. Laser Photonics Rev. 16, 2100604 (2022).

    Article  ADS  Google Scholar 

  39. Xu, X. et al. Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors. Nat. Photon. 16, 698–706 (2022).

    Article  ADS  Google Scholar 

  40. Nauman, M. et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 12, 5597 (2021).

    Article  ADS  Google Scholar 

  41. Wang, Y. et al. Probing electronic states in monolayer semiconductors through static and transient third-harmonic spectroscopies. Adv. Mater. 34, 2107104 (2022).

    Article  Google Scholar 

  42. Rosa, H. G. et al. Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide. Sci. Rep. 8, 10035 (2018).

    Article  ADS  Google Scholar 

  43. Zhou, R., Krasnok, A., Hussain, N., Yang, S. & Ullah, K. Controlling the harmonic generation in transition metal dichalcogenides and their heterostructures. Nanophotonics 11, 3007–3034 (2022).

    Article  Google Scholar 

  44. Penzkofer, A. et al. Picosecond third harmonic generation in β-BaB204 and calcite. In Proc. Nonlinear Optics of Organics and Semiconductors (ed. Kobayashi, T.) Vol. 36, 312–320 (Springer, 1989).

  45. Shi, J. et al. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Adv. Mater. 29, 1701486 (2017).

    Article  Google Scholar 

  46. Zograf, G. et al. Combining ultrahigh index with exceptional nonlinearity in resonant transition metal dichalcogenide nanodisks. Nat. Photon. 18, 751–757 (2024).

    Article  Google Scholar 

  47. Zograf, G. et al. Ultrathin 3R-MoS2 metasurfaces with atomically precise edges for efficient nonlinear nanophotonics. Commun. Phys. 8, 271 (2025).

  48. Guo, Q. et al. Ultrathin quantum light source enabled by a nonlinear van der Waals crystal with vanishing interlayer-electronic-coupling. Nature 613, 53–59 (2023).

    Article  ADS  Google Scholar 

  49. Weissflog, M. A. et al. A tunable transition metal dichalcogenide entangled photon-pair source. Nat. Commun. 15, 7600 (2024).

    Article  Google Scholar 

  50. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  51. Munkhbat, B. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 11, 4604 (2020).

    Article  ADS  Google Scholar 

  52. Munkhbat, B., Küçüköz, B., Baranov, D. G., Antosiewicz, T. J. & Shegai, T. O. Nanostructured transition metal dichalcogenide multilayers for advanced nanophotonics. Laser Photonics Rev. 17, 2200057 (2022).

    Article  ADS  Google Scholar 

  53. Biechteler, J. et al. Fabrication optimization of van der Waals metasurfaces: Inverse patterning boosts resonance quality factor. Adv. Opt. Mater. https://doi.org/10.1002/adom.202500920 (2025).

  54. Schaeper, O. C. et al. Double etch method for the fabrication of nanophotonic devices from van der Waals materials. ACS Photonics 11, 5446–5452 (2024).

  55. Isoniemi, T. et al. Realization of Z2 topological photonic insulators based on bulk transition metal dichalcogenides. ACS Nano 18, 32547–32555 (2024).

    Article  Google Scholar 

  56. Li, Y., Zhou, Z., Zhang, S. & Chen, Z. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739–16744 (2008).

    Article  Google Scholar 

  57. Xiao, S.-l, Yu, W.-z & Gao, S.-p Edge preference and band gap characters of MoS2 and WS2 nanoribbons. Surf. Sci. 653, 107–112 (2016).

    Article  ADS  Google Scholar 

  58. Froch, J. E., Hwang, Y., Kim, S., Aharonovich, I. & Toth, M. Photonic nanostructures from hexagonal boron nitride. Adv. Opt. Mater. 7, 1801344 (2019).

    Article  Google Scholar 

  59. Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article  ADS  Google Scholar 

  60. Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-k oxides. Sci. Adv. 3, e1700481 (2017).

    Article  ADS  Google Scholar 

  61. Pham, T. T., Castelino, R., Felten, A. & Sporken, R. Study of surface oxidation and recovery of clean MoTe2 films. Surfaces Interfaces 28, 101681 (2022).

    Article  Google Scholar 

  62. Ma, P. et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018).

    Article  Google Scholar 

  63. Cottam, N. D. et al. Thin Ga2O3 layers by thermal oxidation of van der Waals GaSe nanostructures for ultraviolet photon sensing. ACS Appl. Nano Mater. 7, 17553–17560 (2024).

    Article  Google Scholar 

  64. Merlein, J. et al. Nanomechanical control of an optical antenna. Nat. Photon. 2, 230–233 (2008).

    Article  Google Scholar 

  65. Cho, H., Shin, D. J., Sung, J. & Gong, S. H. Ultra-thin grating coupler for guided exciton-polaritons in WS2 multilayers. Nanophotonics 12, 2563–2571 (2023).

    Article  Google Scholar 

  66. Zhang, H. et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun. 11, 3552 (2020).

    Article  ADS  Google Scholar 

  67. Bouteyre, P. et al. Simultaneous observation of bright and dark polariton states in subwavelength gratings made from quasi-bulk WS2. Opt. Express 33, 21173–21182 (2025).

    Article  Google Scholar 

  68. Khelifa, R. et al. WSe2 light-emitting device coupled to an h-BN waveguide. ACS Photonics 10, 1328–1333 (2023).

    Article  Google Scholar 

  69. Ling, H. et al. Deeply subwavelength integrated excitonic van der Waals nanophotonics. Optica 10, 1345–1352 (2023).

    Article  Google Scholar 

  70. Froch, J. E. et al. Purcell enhancement of a cavity-coupled emitter in hexagonal boron nitride. Small 18, 2104805 (2022).

    Article  Google Scholar 

  71. Lin, H. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl. 9, 137 (2020).

    Article  ADS  Google Scholar 

  72. Dasgupta, A., Gao, J. & Yang, X. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Lett. 19, 6511–6516 (2019).

    Article  ADS  Google Scholar 

  73. Zhang, X. et al. Azimuthally polarized and unidirectional excitonic emission from deep subwavelength transition metal dichalcogenide annular heterostructures. ACS Photonics 8, 2861–2867 (2021).

    Article  Google Scholar 

  74. Spencer, L., Horder, J., Kim, S., Toth, M. & Aharonovich, I. Monolithic integration of single quantum emitters in hBN bullseye cavities. ACS Photonics 10, 4417–4424 (2023).

    Article  Google Scholar 

  75. Khelifa, R. et al. Coupling interlayer excitons to whispering gallery modes in van der Waals heterostructures. Nano Lett. 20, 6155–6161 (2020).

    Article  ADS  Google Scholar 

  76. Zhang, X. et al. Guiding of visible photons at the angstrom thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).

    Article  ADS  Google Scholar 

  77. Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).

    Article  ADS  Google Scholar 

  78. Kühner, L. et al. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality. Light Sci. Appl. 12, 250 (2023).

    Article  ADS  Google Scholar 

  79. Prokhorov, A. V. et al. Resonant light trapping via lattice-induced multipole coupling in symmetrical metasurfaces. ACS Photonics 9, 3869–3875 (2022).

    Article  Google Scholar 

  80. Gubin, M. Y., Shesterikov, A. V., Tselikov, G. I., Volkov, V. S. & Prokhorov, A. V. Multiresonances of quasi-trapped modes in metasurfaces based on nanoparticles of transition metal dichalcogenides. Appl. Sci. 13, 8961 (2023).

    Article  Google Scholar 

  81. Sortino, L. et al. Atomic-layer assembly of ultrathin optical cavities in van der Waals heterostructure metasurfaces. Nat. Photon. https://doi.org/10.1038/s41566-025-01675-4 (2025).

  82. Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).

    Article  Google Scholar 

  83. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

  84. Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

    Article  ADS  Google Scholar 

  85. Randerson, S. A. et al. Van der Waals nanoantennas on gold as hosts for hybrid Mie-plasmonic resonances. ACS Nano 18, 16208–16221 (2024).

    Article  Google Scholar 

  86. Ling, H., Nourbakhsh, M., Whiteside, V. R., Tischler, J. G. & Davoyan, A. R. Near-unity light–matter interaction in mid-infrared van der Waals metasurfaces. Nano Lett. 24, 3315–3322 (2024).

    Article  ADS  Google Scholar 

  87. Sortino, L. et al. Enhanced light–matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10, 5119 (2019).

    Article  ADS  Google Scholar 

  88. Ling, H., Li, R. & Davoyan, A. R. All van der Waals integrated nanophotonics with bulk transition metal dichalcogenides. ACS Photonics 8, 721–730 (2021).

    Article  Google Scholar 

  89. Nonahal, M. et al. Engineering quantum nanophotonic components from hexagonal boron nitride. Laser Photonics Rev. 17, 2300019 (2023).

    Article  ADS  Google Scholar 

  90. Zhang, X. et al. Ultrathin WS2-on-glass photonic crystal for self-resonant exciton-polaritonics. Adv. Opt. Mater. 8, 1901988 (2020).

    Article  Google Scholar 

  91. Dirnberger, F. et al. Spin-correlated exciton-polaritons in a van der Waals magnet. Nat. Nanotechnol. 17, 1060–1064 (2022).

    Article  ADS  Google Scholar 

  92. Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article  ADS  Google Scholar 

  93. Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 6, 139–147 (2019).

    Article  Google Scholar 

  94. Shin, D. J., Cho, H. H., Sung, J. & Gong, S. H. Direct observation of self-hybridized exciton-polaritons and their valley polarizations in a bare WS2 layer. Adv. Mater. 34, 2207735 (2022).

    Article  Google Scholar 

  95. van de Groep, J. et al. Exciton resonance tuning of an atomically thin lens. Nat. Photon. 14, 426–430 (2020).

    Article  ADS  Google Scholar 

  96. Sung, J. et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photon. 16, 792–797 (2022).

    Article  ADS  Google Scholar 

  97. Lin, X. et al. Two-dimensional pyramid-like WS2 layered structures for highly efficient edge second-harmonic generation. ACS Nano 12, 689–696 (2018).

    Article  Google Scholar 

  98. Lee, S. W., Lee, J. S., Choi, W. H. & Gong, S. H. Ultrathin WS2 polariton waveguide for efficient light guiding. Adv. Opt. Mater. 11, 2300069 (2023).

    Article  Google Scholar 

  99. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  100. Joseph, S., Pandey, S., Sarkar, S. & Joseph, J. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics 10, 4175–4207 (2021).

    Article  Google Scholar 

  101. Zong, X., Li, L. & Liu, Y. Photonic bound states in the continuum in nanostructured transition metal dichalcogenides for strong photon-exciton coupling. Opt. Lett. 46, 6095–6098 (2021).

    Article  ADS  Google Scholar 

  102. Hu, D. et al. Tunable modal birefringence in a low-loss van der Waals waveguide. Adv. Mater. 31, 1807788 (2019).

    Article  Google Scholar 

  103. Hu, F. et al. Imaging exciton-polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).

    Article  ADS  Google Scholar 

  104. Sternbach, A. J. et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 11, 3567 (2020).

    Article  ADS  Google Scholar 

  105. Mooshammer, F. et al. In-plane anisotropy in biaxial ReS2 crystals probed by nano-optical imaging of waveguide modes. ACS Photonics 9, 443–451 (2022).

    Article  Google Scholar 

  106. Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).

    Article  ADS  Google Scholar 

  107. Vyshnevyy, A. A. et al. Van der Waals materials for overcoming fundamental limitations in photonic integrated circuitry. Nano Lett. 23, 8057–8064 (2023).

    Article  ADS  Google Scholar 

  108. Ling, H., Khurgin, J. B. & Davoyan, A. R. Atomic-void van der Waals channel waveguides. Nano Lett. 22, 6254–6261 (2022).

    Article  ADS  Google Scholar 

  109. Ermolaev, G., Grudinin, D., Voronin, K., Vyshnevyy, A. & Arsenin, A. Van der Waals materials for subdiffractional light guidance. Photonics 9, 744 (2022).

    Article  Google Scholar 

  110. Jahani, S. et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nat. Commun. 9, 1893 (2018).

    Article  ADS  Google Scholar 

  111. Vakulenko, A. et al. Adiabatic topological photonic interfaces. Nat. Commun. 14, 4629 (2023).

    Article  ADS  Google Scholar 

  112. Kong, X. T. et al. Graphene-based ultrathin flat lenses. ACS Photonics 2, 200–207 (2015).

    Article  Google Scholar 

  113. Yang, J. et al. Atomically thin optical lenses and gratings. Light Sci. Appl. 5, e16046 (2016).

    Article  Google Scholar 

  114. Muhammad, N., Chen, Y., Qiu, C.-W. & Wang, G. P. Optical bound states in continuum in MoS2-based metasurface for directional light emission. Nano Lett. 21, 967–972 (2021).

    Article  ADS  Google Scholar 

  115. Autere, A. et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Phys. Rev. B 98, 115426 (2018).

    Article  ADS  Google Scholar 

  116. Kim, B. et al. Three-dimensional nonlinear optical materials from twisted two-dimensional van der Waals interfaces. Nat. Photon. 18, 91–98 (2024).

    Article  ADS  Google Scholar 

  117. Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015).

    Article  ADS  Google Scholar 

  118. Tognazzi, A. et al. Interface second harmonic generation enhancement in bulk WS2/MoS2 hetero-bilayer van der Waals nanoantennas. Light Sci. Appl. https://doi.org/10.1038/s41377-025-01983-y (2025).

  119. Kühner, L. et al. High-Q nanophotonics over the full visible spectrum enabled by hexagonal boron nitride metasurfaces. Adv. Mater. 35, 2209688 (2023).

    Article  Google Scholar 

  120. Sortino, L. et al. Optically addressable spin defects coupled to bound states in the continuum metasurfaces. Nat. Commun. 15, 2008 (2024).

    Article  ADS  Google Scholar 

  121. Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article  ADS  Google Scholar 

  122. Li, Y. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987–992 (2017).

    Article  ADS  Google Scholar 

  123. Ge, X., Minkov, M., Fan, S., Li, X. & Zhou, W. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. npj 2D Mater. Appl. 3, 2–6 (2019).

    Article  Google Scholar 

  124. Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).

    Article  ADS  Google Scholar 

  125. Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).

    Article  ADS  Google Scholar 

  126. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  ADS  Google Scholar 

  127. Shang, J. et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 8, 543 (2017).

    Article  ADS  Google Scholar 

  128. Anton-Solanas, C. et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).

    Article  ADS  Google Scholar 

  129. Borodin, B. R. et al. Indirect bandgap MoSe2 resonators for light-emitting nanophotonics. Nanoscale Horizons 8, 396–403 (2023).

    Article  ADS  Google Scholar 

  130. Coriolano, A. et al. Rydberg polaritons in ReS2 crystals. Sci. Adv. 8, eadd8857 (2022).

    Article  Google Scholar 

  131. Munkhbat, B., Canales, A., Küçüköz, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).

    Article  ADS  Google Scholar 

  132. Maciel-Escudero, C. et al. Probing optical anapoles with fast electron beams. Nat. Commun. 14, 8478 (2023).

    Article  ADS  Google Scholar 

  133. Li, J. et al. Tunable strong coupling in transition metal dichalcogenide nanowires. Adv. Mater. 34, 2200656 (2022).

    Article  Google Scholar 

  134. Qin, M. et al. Strong coupling between excitons and quasi-Bound states in the continuum in the bulk transition metal dichalcogenides. Phys. Rev. B 107, 045417 (2023).

    Article  ADS  Google Scholar 

  135. Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).

    Article  ADS  Google Scholar 

  136. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  ADS  Google Scholar 

  137. Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  ADS  Google Scholar 

  138. Yang, Y., Miller, O. D., Christensen, T., Joannopoulos, J. D. & Soljacic, M. Low-loss plasmonic dielectric nanoresonators. Nano Lett. 17, 3238–3245 (2017).

    Article  ADS  Google Scholar 

  139. Xu, L. et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl. 7, 44 (2018).

    Article  ADS  Google Scholar 

  140. Zotev, P. G. et al. Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates. Preprint at https://arxiv.org/abs/2408.01070 (2024).

  141. Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article  ADS  Google Scholar 

  142. Lee, S. W., Lee, J. S., Choi, W. H., Choi, D. & Gong, S.-H. Ultra-compact exciton polariton modulator based on van der Waals semiconductors. Nat. Commun. 15, 2331 (2024).

    Article  ADS  Google Scholar 

  143. Cao, H. et al. Efficient and fast all-optical modulator with in situ grown MoTe2 nanosheets on silicon. ACS Appl. Nano Mater. 6, 838–845 (2023).

    Article  Google Scholar 

  144. Peng, K. et al. Topological valley Hall polariton condensation. Nat. Nanotechnol. 19, 1283–1289 (2024).

    Article  Google Scholar 

  145. Qi, M. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    Article  ADS  Google Scholar 

  146. Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light emission by 3D photonic crystals. Science 305, 227–229 (2004).

    Article  ADS  Google Scholar 

  147. Kumar, P. et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 17, 182–189 (2022).

    Article  ADS  Google Scholar 

  148. Voronin, K. V. et al. Chiral photonic super-crystals based on helical van der Waals homostructures. Laser Photonics Rev. 18, 2301113 (2024).

    Article  Google Scholar 

  149. Trovatello, C. et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors. Nat. Photon. 19, 291–299 (2025).

    Article  Google Scholar 

  150. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–44 (2020).

    Article  ADS  Google Scholar 

  151. Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article  ADS  Google Scholar 

  152. Xu, Z., Song, W. & Crozier, K. B. Optical trapping of nanoparticles using all-silicon nanoantennas. ACS Photonics 5, 4993–5001 (2018).

    Article  Google Scholar 

  153. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).

Download references

Acknowledgements

P.G.Z., Yadong Wang, S.A.R and A.I.T. were supported by the European Graphene Flagship Project under grant agreement no. 881603 and EPSRC grants EP/S030751/1, EP/V006975/1 and EP/V007696/1. Yadong Wang and A.I.T. acknowledge support from UKRI fellowship TWIST-NAN0SPEC EP/X02153X/1. P.B., X.H. and A.I.T. acknowledge support by an EPSRC Programme Grant EP/V026496/1. S.-H.G. acknowledges financial support from the National Research Foundation of Korea (2021M3F3A2A03017083) and Samsung Science and Technology Foundation (SSTF-BA1902-03). T.S. acknowledges funding from the Swedish Research Council (VR project, grants nos. 2017-04545 and 2022-03347), the Knut and Alice Wallenberg Foundation (KAW; grant no. 2019.0140), the 2D-TECH VINNOVA competence centre (ref. 2019-00068) and the Olle Engkvist Foundation (grant no. 211-0063). Yue Wang acknowledges a Research Fellowship awarded by the Royal Academy of Engineering RF/201718/17131 and EPSRC grant no. EP/V047663/1. I.A. was supported by the Australian Research Council (ARC) through grants CE200100010 and FT220100053, by the Office of Naval Research Global (N62909-22-1-2028), and by the Air Force Office of Scientific Research under award number FA2386-25-1-4044. A.T. and L.S. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant no. TI 1063/1 and by the European Union (ERC, METANEXT, 101078018 and EIC, NEHO, 101046329). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union, the European Research Council Executive Agency, or the European Innovation Council and SMEs Executive Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Panaiot G. Zotev or Alexander I. Tartakovskii.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotev, P.G., Bouteyre, P., Wang, Y. et al. Nanophotonics with multilayer van der Waals materials. Nat. Photon. 19, 788–802 (2025). https://doi.org/10.1038/s41566-025-01717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01717-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing