Abstract
The field of nanophotonics requires high-quality materials for the fabrication of resonant structures that can confine light down to the nanoscale. Metallic nanostructures often used for this purpose exhibit high optical losses, so high-refractive-index dielectrics such as silicon (Si) and III–V semiconductors are widely used instead. Recently, layered materials, often referred to as ‘van der Waals materials’ for the forces holding atomic planes together in bulk crystals, have been introduced as alternative dielectric building blocks for nanophotonics. Compared to traditional semiconductors, these materials exhibit higher refractive indices and transparency in the visible and near-infrared favourable for compact waveguides; strong birefringence and large nonlinear optical coefficients attractive for nonlinear optics; and out-of-plane van der Waals adhesive forces enabling novel tuning techniques and heterointegration approaches for the realization of previously inaccessible photonic structures. Recently, these properties of quasi-bulk van der Waals materials (as opposed to their widely studied monolayers) have been applied in a variety of photonic structures and devices, which will be discussed here. We report on recent progress in utilizing layered materials in waveguiding, wavefront shaping, Purcell enhancement, quantum nanophotonics, lasing, nonlinear optics, and strong light–matter coupling, as well as offer a snapshot of future developments in hybrid and tunable nanophotonics, three-dimensional photonic structures, optical trapping, polariton devices and van der Waals integrated nanophotonic circuits.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 686–695 (2016).
Schneider, C., Glazov, M. M., Korn, T., Hofling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 9, 2695 (2018).
Turunen, M. et al. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022).
Li, M. et al. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).
Munkhbat, B., Wrobel, P., Antosiewicz, T. J. & Shegai, T. O. Optical constants of several multilayer transition metal dichalcogenides measured by spectroscopic ellipsometry in the 300–1,700 nm range: high-index, anisotropy and hyperbolicity. ACS Photonics 9, 2398–2407 (2022).
Zotev, P. G. et al. Van der Waals materials for applications in nanophotonics. Laser Photonics Rev. 17, 2200957 (2023).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019).
Danielsen, D. R. et al. Super-resolution nanolithography of two-dimensional materials by anisotropic etching. ACS Appl. Mater. Interfaces 13, 41886–41894 (2021).
Zotev, P. G. et al. Transition metal dichalcogenide dimer nanoantennas for tailored light-matter interactions. ACS Nano 16, 6493–6505 (2022).
Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).
Arora, A. et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 8, 639 (2017).
Wilson, J. & Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).
Liang, W. Y. Optical anisotropy in layer compounds. J. Phys. C Solid State Phys. 6, 551 (1973).
Beal, A. R. & Hughes, H. P. Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C Solid State Phys. 12, 881–890 (1979).
Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).
Rah, Y., Jin, Y., Kim, S. & Yu, K. Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared. Opt. Lett. 44, 3797–3800 (2019).
Grudinin, D. V. et al. Hexagonal boron nitride nanophotonics: a record-breaking material for the ultra-violet and visible spectral ranges. Mater. Horizons 10, 2427–2435 (2023).
Isik, M., Tugay, E. & Gasanly, N. Optical properties of GaS crystals: combined study of temperature-dependent band gap energy and oscillator parameters. Indian J. Pure Appl. Phys. 55, 583–588 (2017).
Slavich, A. S. et al. Exploring van der Waals materials with high anisotropy: geometrical and optical approaches. Light Sci. Appl. 13, 68 (2024).
Fang, M. et al. Layer-dependent dielectric permittivity of topological insulator Bi2Se3 thin films. Appl. Surf. Sci. 509, 144822 (2020).
Nandi, S. et al. Unveiling local optical properties using nanoimaging phase mapping in high-index topological insulator Bi2Se3 resonant nanostructures. Nano Lett. 23, 11501–11509 (2023).
Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. I. Group IVA: octahedral coordination. J. Phys. C 5, 3531 (1972).
Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C 5, 3540 (1972).
Piacentini, M., Khumalo, F. S., Olson, C. G., Anderegg, J. W. & Lynch, D. W. Optical transitions, XPS, electronic states in NiPS3. Chem. Phys. 65, 289–304 (1982).
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2. Phys. Rev. B 90, 205422 (2014).
Lee, S. Y., Jeong, T. Y., Jung, S. & Yee, K. J. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B Basic Res. 256, 1800417 (2019).
Green, T. D. et al. Optical material anisotropy in high-index transition metal dichalcogenide Mie nanoresonators. Optica 7, 680–686 (2020).
Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).
Ermolaev, G. A. et al. Wandering principal optical axes in van der Waals triclinic materials. Nat. Commun. 15, 1552 (2024).
Busschaert, S., Cavigelli, M., Khelifa, R., Jain, A. & Novotny, L. Transition metal dichalcogenide resonators for second harmonic signal enhancement. ACS Photonics 7, 2482–2488 (2020).
Popkova, A. et al. Nonlinear exciton-Mie coupling in transition metal dichalcogenide nanoresonators. Laser Photonics Rev. 16, 2100604 (2022).
Xu, X. et al. Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors. Nat. Photon. 16, 698–706 (2022).
Nauman, M. et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 12, 5597 (2021).
Wang, Y. et al. Probing electronic states in monolayer semiconductors through static and transient third-harmonic spectroscopies. Adv. Mater. 34, 2107104 (2022).
Rosa, H. G. et al. Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide. Sci. Rep. 8, 10035 (2018).
Zhou, R., Krasnok, A., Hussain, N., Yang, S. & Ullah, K. Controlling the harmonic generation in transition metal dichalcogenides and their heterostructures. Nanophotonics 11, 3007–3034 (2022).
Penzkofer, A. et al. Picosecond third harmonic generation in β-BaB204 and calcite. In Proc. Nonlinear Optics of Organics and Semiconductors (ed. Kobayashi, T.) Vol. 36, 312–320 (Springer, 1989).
Shi, J. et al. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Adv. Mater. 29, 1701486 (2017).
Zograf, G. et al. Combining ultrahigh index with exceptional nonlinearity in resonant transition metal dichalcogenide nanodisks. Nat. Photon. 18, 751–757 (2024).
Zograf, G. et al. Ultrathin 3R-MoS2 metasurfaces with atomically precise edges for efficient nonlinear nanophotonics. Commun. Phys. 8, 271 (2025).
Guo, Q. et al. Ultrathin quantum light source enabled by a nonlinear van der Waals crystal with vanishing interlayer-electronic-coupling. Nature 613, 53–59 (2023).
Weissflog, M. A. et al. A tunable transition metal dichalcogenide entangled photon-pair source. Nat. Commun. 15, 7600 (2024).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Munkhbat, B. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 11, 4604 (2020).
Munkhbat, B., Küçüköz, B., Baranov, D. G., Antosiewicz, T. J. & Shegai, T. O. Nanostructured transition metal dichalcogenide multilayers for advanced nanophotonics. Laser Photonics Rev. 17, 2200057 (2022).
Biechteler, J. et al. Fabrication optimization of van der Waals metasurfaces: Inverse patterning boosts resonance quality factor. Adv. Opt. Mater. https://doi.org/10.1002/adom.202500920 (2025).
Schaeper, O. C. et al. Double etch method for the fabrication of nanophotonic devices from van der Waals materials. ACS Photonics 11, 5446–5452 (2024).
Isoniemi, T. et al. Realization of Z2 topological photonic insulators based on bulk transition metal dichalcogenides. ACS Nano 18, 32547–32555 (2024).
Li, Y., Zhou, Z., Zhang, S. & Chen, Z. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739–16744 (2008).
Xiao, S.-l, Yu, W.-z & Gao, S.-p Edge preference and band gap characters of MoS2 and WS2 nanoribbons. Surf. Sci. 653, 107–112 (2016).
Froch, J. E., Hwang, Y., Kim, S., Aharonovich, I. & Toth, M. Photonic nanostructures from hexagonal boron nitride. Adv. Opt. Mater. 7, 1801344 (2019).
Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).
Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-k oxides. Sci. Adv. 3, e1700481 (2017).
Pham, T. T., Castelino, R., Felten, A. & Sporken, R. Study of surface oxidation and recovery of clean MoTe2 films. Surfaces Interfaces 28, 101681 (2022).
Ma, P. et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018).
Cottam, N. D. et al. Thin Ga2O3 layers by thermal oxidation of van der Waals GaSe nanostructures for ultraviolet photon sensing. ACS Appl. Nano Mater. 7, 17553–17560 (2024).
Merlein, J. et al. Nanomechanical control of an optical antenna. Nat. Photon. 2, 230–233 (2008).
Cho, H., Shin, D. J., Sung, J. & Gong, S. H. Ultra-thin grating coupler for guided exciton-polaritons in WS2 multilayers. Nanophotonics 12, 2563–2571 (2023).
Zhang, H. et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun. 11, 3552 (2020).
Bouteyre, P. et al. Simultaneous observation of bright and dark polariton states in subwavelength gratings made from quasi-bulk WS2. Opt. Express 33, 21173–21182 (2025).
Khelifa, R. et al. WSe2 light-emitting device coupled to an h-BN waveguide. ACS Photonics 10, 1328–1333 (2023).
Ling, H. et al. Deeply subwavelength integrated excitonic van der Waals nanophotonics. Optica 10, 1345–1352 (2023).
Froch, J. E. et al. Purcell enhancement of a cavity-coupled emitter in hexagonal boron nitride. Small 18, 2104805 (2022).
Lin, H. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl. 9, 137 (2020).
Dasgupta, A., Gao, J. & Yang, X. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Lett. 19, 6511–6516 (2019).
Zhang, X. et al. Azimuthally polarized and unidirectional excitonic emission from deep subwavelength transition metal dichalcogenide annular heterostructures. ACS Photonics 8, 2861–2867 (2021).
Spencer, L., Horder, J., Kim, S., Toth, M. & Aharonovich, I. Monolithic integration of single quantum emitters in hBN bullseye cavities. ACS Photonics 10, 4417–4424 (2023).
Khelifa, R. et al. Coupling interlayer excitons to whispering gallery modes in van der Waals heterostructures. Nano Lett. 20, 6155–6161 (2020).
Zhang, X. et al. Guiding of visible photons at the angstrom thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).
Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).
Kühner, L. et al. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality. Light Sci. Appl. 12, 250 (2023).
Prokhorov, A. V. et al. Resonant light trapping via lattice-induced multipole coupling in symmetrical metasurfaces. ACS Photonics 9, 3869–3875 (2022).
Gubin, M. Y., Shesterikov, A. V., Tselikov, G. I., Volkov, V. S. & Prokhorov, A. V. Multiresonances of quasi-trapped modes in metasurfaces based on nanoparticles of transition metal dichalcogenides. Appl. Sci. 13, 8961 (2023).
Sortino, L. et al. Atomic-layer assembly of ultrathin optical cavities in van der Waals heterostructure metasurfaces. Nat. Photon. https://doi.org/10.1038/s41566-025-01675-4 (2025).
Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).
Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).
Randerson, S. A. et al. Van der Waals nanoantennas on gold as hosts for hybrid Mie-plasmonic resonances. ACS Nano 18, 16208–16221 (2024).
Ling, H., Nourbakhsh, M., Whiteside, V. R., Tischler, J. G. & Davoyan, A. R. Near-unity light–matter interaction in mid-infrared van der Waals metasurfaces. Nano Lett. 24, 3315–3322 (2024).
Sortino, L. et al. Enhanced light–matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10, 5119 (2019).
Ling, H., Li, R. & Davoyan, A. R. All van der Waals integrated nanophotonics with bulk transition metal dichalcogenides. ACS Photonics 8, 721–730 (2021).
Nonahal, M. et al. Engineering quantum nanophotonic components from hexagonal boron nitride. Laser Photonics Rev. 17, 2300019 (2023).
Zhang, X. et al. Ultrathin WS2-on-glass photonic crystal for self-resonant exciton-polaritonics. Adv. Opt. Mater. 8, 1901988 (2020).
Dirnberger, F. et al. Spin-correlated exciton-polaritons in a van der Waals magnet. Nat. Nanotechnol. 17, 1060–1064 (2022).
Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).
Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 6, 139–147 (2019).
Shin, D. J., Cho, H. H., Sung, J. & Gong, S. H. Direct observation of self-hybridized exciton-polaritons and their valley polarizations in a bare WS2 layer. Adv. Mater. 34, 2207735 (2022).
van de Groep, J. et al. Exciton resonance tuning of an atomically thin lens. Nat. Photon. 14, 426–430 (2020).
Sung, J. et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photon. 16, 792–797 (2022).
Lin, X. et al. Two-dimensional pyramid-like WS2 layered structures for highly efficient edge second-harmonic generation. ACS Nano 12, 689–696 (2018).
Lee, S. W., Lee, J. S., Choi, W. H. & Gong, S. H. Ultrathin WS2 polariton waveguide for efficient light guiding. Adv. Opt. Mater. 11, 2300069 (2023).
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Joseph, S., Pandey, S., Sarkar, S. & Joseph, J. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics 10, 4175–4207 (2021).
Zong, X., Li, L. & Liu, Y. Photonic bound states in the continuum in nanostructured transition metal dichalcogenides for strong photon-exciton coupling. Opt. Lett. 46, 6095–6098 (2021).
Hu, D. et al. Tunable modal birefringence in a low-loss van der Waals waveguide. Adv. Mater. 31, 1807788 (2019).
Hu, F. et al. Imaging exciton-polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).
Sternbach, A. J. et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 11, 3567 (2020).
Mooshammer, F. et al. In-plane anisotropy in biaxial ReS2 crystals probed by nano-optical imaging of waveguide modes. ACS Photonics 9, 443–451 (2022).
Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).
Vyshnevyy, A. A. et al. Van der Waals materials for overcoming fundamental limitations in photonic integrated circuitry. Nano Lett. 23, 8057–8064 (2023).
Ling, H., Khurgin, J. B. & Davoyan, A. R. Atomic-void van der Waals channel waveguides. Nano Lett. 22, 6254–6261 (2022).
Ermolaev, G., Grudinin, D., Voronin, K., Vyshnevyy, A. & Arsenin, A. Van der Waals materials for subdiffractional light guidance. Photonics 9, 744 (2022).
Jahani, S. et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nat. Commun. 9, 1893 (2018).
Vakulenko, A. et al. Adiabatic topological photonic interfaces. Nat. Commun. 14, 4629 (2023).
Kong, X. T. et al. Graphene-based ultrathin flat lenses. ACS Photonics 2, 200–207 (2015).
Yang, J. et al. Atomically thin optical lenses and gratings. Light Sci. Appl. 5, e16046 (2016).
Muhammad, N., Chen, Y., Qiu, C.-W. & Wang, G. P. Optical bound states in continuum in MoS2-based metasurface for directional light emission. Nano Lett. 21, 967–972 (2021).
Autere, A. et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Phys. Rev. B 98, 115426 (2018).
Kim, B. et al. Three-dimensional nonlinear optical materials from twisted two-dimensional van der Waals interfaces. Nat. Photon. 18, 91–98 (2024).
Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015).
Tognazzi, A. et al. Interface second harmonic generation enhancement in bulk WS2/MoS2 hetero-bilayer van der Waals nanoantennas. Light Sci. Appl. https://doi.org/10.1038/s41377-025-01983-y (2025).
Kühner, L. et al. High-Q nanophotonics over the full visible spectrum enabled by hexagonal boron nitride metasurfaces. Adv. Mater. 35, 2209688 (2023).
Sortino, L. et al. Optically addressable spin defects coupled to bound states in the continuum metasurfaces. Nat. Commun. 15, 2008 (2024).
Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).
Li, Y. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987–992 (2017).
Ge, X., Minkov, M., Fan, S., Li, X. & Zhou, W. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. npj 2D Mater. Appl. 3, 2–6 (2019).
Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).
Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).
Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).
Shang, J. et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 8, 543 (2017).
Anton-Solanas, C. et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).
Borodin, B. R. et al. Indirect bandgap MoSe2 resonators for light-emitting nanophotonics. Nanoscale Horizons 8, 396–403 (2023).
Coriolano, A. et al. Rydberg polaritons in ReS2 crystals. Sci. Adv. 8, eadd8857 (2022).
Munkhbat, B., Canales, A., Küçüköz, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).
Maciel-Escudero, C. et al. Probing optical anapoles with fast electron beams. Nat. Commun. 14, 8478 (2023).
Li, J. et al. Tunable strong coupling in transition metal dichalcogenide nanowires. Adv. Mater. 34, 2200656 (2022).
Qin, M. et al. Strong coupling between excitons and quasi-Bound states in the continuum in the bulk transition metal dichalcogenides. Phys. Rev. B 107, 045417 (2023).
Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).
Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).
Yang, Y., Miller, O. D., Christensen, T., Joannopoulos, J. D. & Soljacic, M. Low-loss plasmonic dielectric nanoresonators. Nano Lett. 17, 3238–3245 (2017).
Xu, L. et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl. 7, 44 (2018).
Zotev, P. G. et al. Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates. Preprint at https://arxiv.org/abs/2408.01070 (2024).
Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).
Lee, S. W., Lee, J. S., Choi, W. H., Choi, D. & Gong, S.-H. Ultra-compact exciton polariton modulator based on van der Waals semiconductors. Nat. Commun. 15, 2331 (2024).
Cao, H. et al. Efficient and fast all-optical modulator with in situ grown MoTe2 nanosheets on silicon. ACS Appl. Nano Mater. 6, 838–845 (2023).
Peng, K. et al. Topological valley Hall polariton condensation. Nat. Nanotechnol. 19, 1283–1289 (2024).
Qi, M. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).
Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light emission by 3D photonic crystals. Science 305, 227–229 (2004).
Kumar, P. et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 17, 182–189 (2022).
Voronin, K. V. et al. Chiral photonic super-crystals based on helical van der Waals homostructures. Laser Photonics Rev. 18, 2301113 (2024).
Trovatello, C. et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors. Nat. Photon. 19, 291–299 (2025).
Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–44 (2020).
Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).
Xu, Z., Song, W. & Crozier, K. B. Optical trapping of nanoparticles using all-silicon nanoantennas. ACS Photonics 5, 4993–5001 (2018).
Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).
Acknowledgements
P.G.Z., Yadong Wang, S.A.R and A.I.T. were supported by the European Graphene Flagship Project under grant agreement no. 881603 and EPSRC grants EP/S030751/1, EP/V006975/1 and EP/V007696/1. Yadong Wang and A.I.T. acknowledge support from UKRI fellowship TWIST-NAN0SPEC EP/X02153X/1. P.B., X.H. and A.I.T. acknowledge support by an EPSRC Programme Grant EP/V026496/1. S.-H.G. acknowledges financial support from the National Research Foundation of Korea (2021M3F3A2A03017083) and Samsung Science and Technology Foundation (SSTF-BA1902-03). T.S. acknowledges funding from the Swedish Research Council (VR project, grants nos. 2017-04545 and 2022-03347), the Knut and Alice Wallenberg Foundation (KAW; grant no. 2019.0140), the 2D-TECH VINNOVA competence centre (ref. 2019-00068) and the Olle Engkvist Foundation (grant no. 211-0063). Yue Wang acknowledges a Research Fellowship awarded by the Royal Academy of Engineering RF/201718/17131 and EPSRC grant no. EP/V047663/1. I.A. was supported by the Australian Research Council (ARC) through grants CE200100010 and FT220100053, by the Office of Naval Research Global (N62909-22-1-2028), and by the Air Force Office of Scientific Research under award number FA2386-25-1-4044. A.T. and L.S. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant no. TI 1063/1 and by the European Union (ERC, METANEXT, 101078018 and EIC, NEHO, 101046329). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union, the European Research Council Executive Agency, or the European Innovation Council and SMEs Executive Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zotev, P.G., Bouteyre, P., Wang, Y. et al. Nanophotonics with multilayer van der Waals materials. Nat. Photon. 19, 788–802 (2025). https://doi.org/10.1038/s41566-025-01717-x
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01717-x