Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-molecule orientation and localization microscopy

Abstract

Single-molecule localization microscopy (SMLM) offers enhanced spatial resolution in optical microscopy, providing detailed insights into the spatial organization of proteins in cells at the nanoscale. Over the past decade, SMLM has progressively incorporated the capability to retrieve the orientations of single molecules using their polarized dipolar emission pattern. Here we explore recent advancements in single-molecule orientation and localization microscopy (SMOLM), which yields super-resolved images of molecular three-dimensional (3D) orientations, wobble and 3D positions. This advancement opens possibilities to explore the nanoscale organization and conformation of biological molecules as well as to monitor and design local 3D optical fields in nanophotonics. We cover the principles of SMOLM, discuss recent advances and applications in biology and photonics, and finally highlight exciting future directions and challenges in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of SMOLM.
Fig. 2: Measurement and performance assessment in SMOLM.
Fig. 3: Biological applications of SMOLM.
Fig. 4: SMOLM in photonics.

Similar content being viewed by others

References

  1. He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10, 194 (2021).

    Article  ADS  Google Scholar 

  2. Alonso, M. A. Geometric descriptions for the polarization of nonparaxial light: a tutorial. Adv. Opt. Photon. 15, 176–235 (2023).

    Article  Google Scholar 

  3. Li, Z. et al. Optical polarization manipulations with anisotropic nanostructures. PhotoniX 5, 30 (2024).

    Article  ADS  Google Scholar 

  4. Li, X. et al. Polarimetric imaging through scattering media: a review. Front. Phys. 10, 815296 (2022).

    Article  Google Scholar 

  5. Brasselet, S. & Alonso, M. A. Polarization microscopy: from ensemble structural imaging to single-molecule 3D orientation and localization microscopy. Optica 10, 1486–1510 (2023).

    Article  Google Scholar 

  6. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    Article  ADS  Google Scholar 

  7. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  ADS  Google Scholar 

  8. Ha, T., Enderle, T. H., Chemla, D. S., Selvin, P. R. & Weiss, S. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982 (1996).

    Article  ADS  Google Scholar 

  9. Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021).

    Article  Google Scholar 

  10. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

    Article  Google Scholar 

  11. Zhang, O. & Lew, M. D. Single-molecule orientation-localization microscopy: applications and approaches. Q. Rev. Biophys. 57, e17 (2024).

    Article  Google Scholar 

  12. Wu, T. & Lew, M. D. in Coded Optical Imaging (ed. Liang, J.) 207–223 (Springer, 2024); https://doi.org/10.1007/978-3-031-39062-3_12

  13. Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J. & Moerner, W. E. The role of molecular dipole orientation in single‐molecule fluorescence microscopy and implications for super‐resolution imaging. ChemPhysChem 15, 587–599 (2014).

    Article  Google Scholar 

  14. Reinhardt, S. C. M. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

    Article  ADS  Google Scholar 

  15. Sahl, S. J. et al. Direct optical measurement of intramolecular distances with angstrom precision. Science 386, 180–187 (2024).

    Article  Google Scholar 

  16. Daly, S. et al. High-density volumetric super-resolution microscopy. Nat. Commun. 15, 1940 (2024).

    Article  ADS  Google Scholar 

  17. Saliba, N., Gagliano, G. & Gustavsson, A.-K. Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet. Nat. Commun. 15, 10187 (2024).

    Article  Google Scholar 

  18. Backer, A. S., Lee, M. Y. & Moerner, W. E. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. Optica 3, 659 (2016).

    Article  ADS  Google Scholar 

  19. Chandler, T., Mehta, S., Shroff, H., Oldenbourg, R. & La Rivière, P. J. Single-fluorophore orientation determination with multiview polarized illumination: modeling and microscope design. Opt. Express 25, 31309 (2017).

    Article  ADS  Google Scholar 

  20. Thorsen, R. Ø., Hulleman, C. N., Rieger, B. & Stallinga, S. Photon efficient orientation estimation using polarization modulation in single-molecule localization microscopy. Biomed. Opt. Express 13, 2835–2858 (2022).

    Article  Google Scholar 

  21. Chandler, T. et al. Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope. Proc. Natl Acad. Sci. USA 122, e2406679122 (2025).

    Article  Google Scholar 

  22. Hulleman, C. N. et al. Fluorescence polarization control for on-off switching of single molecules at cryogenic temperatures. Small Methods 2, 1700323 (2018).

    Article  Google Scholar 

  23. Böning, D., Wieser, F.-F. & Sandoghdar, V. Polarization-encoded colocalization microscopy at cryogenic temperatures. ACS Photonics 8, 194–201 (2021).

    Article  Google Scholar 

  24. Backer, A. S. & Moerner, W. E. Extending single-molecule microscopy using optical Fourier processing. J. Phys. Chem. B 118, 8313–8329 (2014).

    Article  Google Scholar 

  25. Backer, A. S. & Moerner, W. E. Determining the rotational mobility of a single molecule from a single image: a numerical study. Opt. Express 23, 4255–4276 (2015).

    Article  Google Scholar 

  26. Stallinga, S. Effect of rotational diffusion in an orientational potential well on the point spread function of electric dipole emitters. J. Opt. Soc. Am. A 32, 213–223 (2015).

    Article  Google Scholar 

  27. Chandler, T., Shroff, H., Oldenbourg, R. & La Rivière, P. Spatio-angular fluorescence microscopy III. Constrained angular diffusion, polarized excitation and high-NA imaging. J. Opt. Soc. Am. A 37, 1465–1479 (2020).

    Article  Google Scholar 

  28. Herrera, I., Alemán-Castañeda, L. A., Brasselet, S. & Alonso, M. A. Stokes-based analysis for the estimation of 3D dipolar emission. J. Opt. Soc. Am. A 41, 2134–2148 (2024).

    Article  Google Scholar 

  29. Lu, J., Mazidi, H., Ding, T., Zhang, O. & Lew, M. D. Single‐molecule 3D orientation imaging reveals nanoscale compositional heterogeneity in lipid membranes. Angew. Chem. Int. Ed. 59, 17572–17579 (2020).

    Article  Google Scholar 

  30. Wu, T., Lu, J. & Lew, M. D. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. Optica 9, 505–511 (2022).

    Article  Google Scholar 

  31. Hulleman, C. N. et al. Simultaneous orientation and 3D localization microscopy with a Vortex point spread function. Nat. Commun. 12, 5934 (2021).

    Article  ADS  Google Scholar 

  32. Ding, T. & Lew, M. D. Single-molecule localization microscopy of 3D orientation and anisotropic wobble using a polarized vortex point spread function. J. Phys. Chem. B 125, 12718–12729 (2021).

    Article  Google Scholar 

  33. Curcio, V., Alemán-Castañeda, L. A., Brown, T. G., Brasselet, S. & Alonso, M. A. Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation. Nat. Commun. 11, 5307 (2020).

    Article  ADS  Google Scholar 

  34. Zhang, O., Zhou, W., Lu, J., Wu, T. & Lew, M. D. Resolving the three-dimensional rotational and translational dynamics of single molecules using radially and azimuthally polarized fluorescence. Nano Lett. 22, 1024–1031 (2022).

    Article  ADS  Google Scholar 

  35. Fordey, T. et al. Single-shot three-dimensional orientation imaging of nanorods using spin to orbital angular momentum conversion. Nano Lett. 21, 7244–7251 (2021).

    Article  ADS  Google Scholar 

  36. Zhang, O. et al. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope. Nat. Photon. 17, 179–186 (2022).

    Article  ADS  Google Scholar 

  37. Munger, E., Sison, M. & Brasselet, S. Influence of the excitation polarization on single molecule 3D orientation imaging. Opt. Commun. 541, 129480 (2023).

    Article  Google Scholar 

  38. Chen, Y., Qiu, Y. & Lew, M. D. Resolving the orientations of and angular separation between a pair of dipole emitters. Phys. Rev. Lett. 134, 093805 (2025).

    Article  Google Scholar 

  39. Shaban, H. A., Valades-Cruz, C. A., Savatier, J. & Brasselet, S. Polarized super-resolution structural imaging inside amyloid fibrils using Thioflavine T. Sci Rep 7, 12482 (2017).

    Article  ADS  Google Scholar 

  40. Wu, T., Lu, P., Rahman, M. A., Li, X. & Lew, M. D. Deep-SMOLM: deep learning resolves the 3D orientations and 2D positions of overlapping single molecules with optimal nanoscale resolution. Opt. Express 30, 36761 (2022).

    Article  ADS  Google Scholar 

  41. Chao, J., Sally Ward, E. & Ober, R. J. Fisher information theory for parameter estimation in single molecule microscopy: tutorial. J. Opt. Soc. Am. A 33, B36–B57 (2016).

    Article  Google Scholar 

  42. Zhang, O. & Lew, M. D. Single-molecule orientation localization microscopy I: fundamental limits. J. Opt. Soc. Am. A 38, 277–287 (2021).

    Google Scholar 

  43. Zhang, O. & Lew, M. D. Fundamental limits on measuring the rotational constraint of single molecules using fluorescence microscopy. Phys. Rev. Lett. 122, 198301 (2019).

    Article  ADS  Google Scholar 

  44. Zhou, W., Wu, T. & Lew, M. D. Fundamental limits in measuring the anisotropic rotational diffusion of single molecules. J. Phys. Chem. A 128, 5808–5815 (2024).

    Article  Google Scholar 

  45. Ferdman, B. et al. VIPR: vectorial implementation of phase retrieval for fast and accurate microscopic pixel-wise pupil estimation. Opt. Express 28, 10179 (2020).

    Article  ADS  Google Scholar 

  46. Jouchet, P., Roy, A. R. & Moerner, W. E. Combining deep learning approaches and point spread function engineering for simultaneous 3D position and 3D orientation measurements of fluorescent single molecules. Opt. Commun. 542, 129589 (2023).

    Article  Google Scholar 

  47. Valades Cruz, C. A. et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl Acad. Sci. USA 113, E820–E828 (2016).

    Article  Google Scholar 

  48. Backer, A. S. et al. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. Sci. Adv. 5, eaav1083 (2019).

    Article  ADS  Google Scholar 

  49. Ding, T., Wu, T., Mazidi, H., Zhang, O. & Lew, M. D. Single-molecule orientation localization microscopy for resolving structural heterogeneities between amyloid fibrils. Optica 7, 602–607 (2020).

    Article  Google Scholar 

  50. Sarkar, A., Namboodiri, V. & Kumbhakar, M. Single-molecule orientation imaging reveals two distinct binding configurations on amyloid fibrils. J. Phys. Chem. Lett. 14, 4990–4996 (2023).

    Article  Google Scholar 

  51. Rimoli, C. V., Valades-Cruz, C. A., Curcio, V., Mavrakis, M. & Brasselet, S. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. Nat. Commun. 13, 301 (2022).

    Article  ADS  Google Scholar 

  52. Bruggeman, E. et al. POLCAM: instant molecular orientation microscopy for the life sciences. Nat. Methods 21, 1873–1883 (2024).

    Article  Google Scholar 

  53. Zhang, P. et al. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods 15, 913–916 (2018).

    Article  Google Scholar 

  54. Siemons, M. E., Kapitein, L. C. & Stallinga, S. Axial accuracy in localization microscopy with 3D point spread function engineering. Opt. Express 30, 28290 (2022).

    Article  ADS  Google Scholar 

  55. Alemán-Castañeda, L. A. et al. Using fluorescent beads to emulate single fluorophores. J. Opt. Soc. Am. A 39, C167–C178 (2022).

    Article  Google Scholar 

  56. Liu, S. et al. Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nat. Methods 21, 1082–1093 (2024).

    Article  Google Scholar 

  57. Gutiérrez-Cuevas, R., Alemán-Castañeda, L. A., Herrera, I., Brasselet, S. & Alonso, M. A. Vectorial phase retrieval in super-resolution polarization microscopy. APL Photonics 9, 026106 (2024).

    Article  ADS  Google Scholar 

  58. Simone, A. D., Corrie, J. E. T., Dale, R. E., Irving, M. & Fraternali, F. Conformation and dynamics of a rhodamine probe attached at two sites on a protein: implications for molecular structure determination in situ. J. Am. Chem. Soc. 130, 17120–17128 (2008).

    Article  Google Scholar 

  59. Lewis, J. H. & Lu, Z. Resolution of ångström-scale protein conformational changes by analyzing fluorescence anisotropy. Nat. Struct. Mol. Biol. 26, 802–807 (2019).

    Article  Google Scholar 

  60. Collot, M., Pfister, S. & Klymchenko, A. S. Advanced functional fluorescent probes for cell plasma membranes. Curr. Opin. Chem. Biol. 69, 102161 (2022).

    Article  Google Scholar 

  61. Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc. Natl Acad. Sci. USA 113, E6352–E6361 (2016).

    Article  Google Scholar 

  62. Martins, C. S. et al. Genetically encoded reporters of actin filament organization in living cells and tissues. Cell 188, 2540–2559.e27 (2025).

    Article  Google Scholar 

  63. Mazal, H., Wieser, F.-F. & Sandoghdar, V. Deciphering a hexameric protein complex with Angstrom optical resolution. eLife 11, e76308 (2022).

    Article  Google Scholar 

  64. Brockman, J. M. et al. Mapping the 3D orientation of piconewton integrin traction forces. Nat. Methods 15, 115–118 (2018).

    Article  Google Scholar 

  65. Zhou, W. et al. Resolving the nanoscale structure of β-sheet peptide self-assemblies using single-molecule orientation–localization microscopy. ACS Nano 18, 8798–8810 (2024).

    Article  Google Scholar 

  66. Sun, B., Ding, T., Zhou, W., Porter, T. S. & Lew, M. D. Single-molecule orientation imaging reveals the nano-architecture of amyloid fibrils undergoing growth and decay. Nano Lett. 24, 7276–7283 (2024).

    Article  Google Scholar 

  67. Bongiovanni, M. N. et al. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat. Commun. 7, 13544 (2016).

    Article  ADS  Google Scholar 

  68. Lee, J.-E. et al. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. Nano Lett. 18, 7494–7501 (2018).

    Article  ADS  Google Scholar 

  69. Börner, R., Ehrlich, N., Hohlbein, J. & Hübner, C. G. Single molecule 3D orientation in time and space: a 6D dynamic study on fluorescently labeled lipid membranes. J. Fluoresc. 26, 963–975 (2016).

    Article  Google Scholar 

  70. Erkamp, N. A. et al. Differential interactions determine anisotropies at interfaces of RNA-based biomolecular condensates. Nat. Commun. 16, 3463 (2025).

    Article  Google Scholar 

  71. Gao, G., Sumrall, E. R. & Walter, N. G. Nanoscale domains govern local diffusion and aging within FUS condensates. Preprint at https://www.biorxiv.org/content/10.1101/2024.04.01.587651v2 (2025).

  72. Wu, T. et al. Single-fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates. Nat. Phys 21, 778–786 (2025).

    Article  Google Scholar 

  73. Tenopala-Carmona, F. et al. Orientation distributions of vacuum-deposited organic emitters revealed by single-molecule microscopy. Nat. Commun. 14, 6126 (2023).

    Article  ADS  Google Scholar 

  74. Li, P. et al. Single-molecule nano-optoelectronics: insights from physics. Rep. Prog. Phys. 85, 086401 (2022).

    Article  ADS  Google Scholar 

  75. Xu, X. et al. Tuning electrostatic gating of semiconducting carbon nanotubes by controlling protein orientation in biosensing devices. Angew. Chem. Int. Ed. 60, 20184–20189 (2021).

    Article  Google Scholar 

  76. Guo, W. et al. Dipole orientation reveals single-molecule interactions and dynamics on 2D crystals. Preprint at https://arxiv.org/abs/2408.01207 (2024).

  77. Kuzyk, A., Jungmann, R., Acuna, G. P. & Liu, N. DNA origami route for nanophotonics. ACS Photonics 5, 1151–1163 (2018).

    Article  Google Scholar 

  78. Hübner, K. et al. Determining the in-plane orientation and binding mode of single fluorescent dyes in DNA origami structures. ACS Nano 15, 5109–5117 (2021).

    Article  Google Scholar 

  79. Cervantes-Salguero, K. et al. Strategies for controlling the spatial orientation of single molecules tethered on DNA origami templates physisorbed on glass substrates: intercalation and stretching. Int. J. Mol. Sci. 23, 7690 (2022).

    Article  Google Scholar 

  80. Adamczyk, A. K. et al. DNA self-assembly of single molecules with deterministic position and orientation. ACS Nano 16, 16924–16931 (2022).

    Article  Google Scholar 

  81. Gopinath, A. et al. Absolute and arbitrary orientation of single-molecule shapes. Science 371, eabd6179 (2021).

    Article  Google Scholar 

  82. Ghosh, A. et al. Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nat. Photon. 13, 860–865 (2019).

    Article  ADS  Google Scholar 

  83. Córdova-Castro, R. M. et al. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas. Light Sci. Appl. 13, 7 (2024).

    Article  ADS  Google Scholar 

  84. Bloksma, F. & Zijlstra, P. Imaging and localization of single emitters near plasmonic particles of different size, shape and material. J. Phys. Chem. C 125, 22084–22092 (2021).

    Article  Google Scholar 

  85. Baiyasi, R. et al. PSF distortion in dye–plasmonic nanomaterial interactions: friend or foe? ACS Photonics 6, 699–708 (2019).

    Article  Google Scholar 

  86. Huijben, T. A. P. M. et al. Point-spread function deformations unlock 3D localization microscopy on spherical nanoparticles. ACS Nano 18, 29832–29845 (2024).

    Article  Google Scholar 

  87. Moon, G. et al. Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission. Light Sci. Appl. 12, 221 (2023).

    Article  ADS  Google Scholar 

  88. Wang, M. et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat. Rev. Chem. 6, 681–704 (2022).

    Article  Google Scholar 

  89. Neugebauer, M., Eismann, J. S., Bauer, T. & Banzer, P. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X 8, 021042 (2018).

    Google Scholar 

  90. Yang, D., Hu, H., Gao, H., Chen, J. & Zhan, Q. Mie scattering nanointerferometry for the reconstruction of tightly focused vector fields by polarization decomposition. Photonics 10, 496 (2023).

    Article  Google Scholar 

  91. Eismann, J. S., Neugebauer, M., Mantel, K. & Banzer, P. Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer. Light Sci. Appl. 10, 223 (2021).

    Article  ADS  Google Scholar 

  92. Neugebauer, M., Woźniak, P., Bag, A., Leuchs, G. & Banzer, P. Polarization-controlled directional scattering for nanoscopic position sensing. Nat. Commun. 7, 829–834 (2016).

    Article  Google Scholar 

  93. Neugebauer, M., Banzer, P. & Nechayev, S. Emission of circularly polarized light by a linear dipole. Sci. Adv. 5, eaav7588 (2019).

    Article  ADS  Google Scholar 

  94. Lee, I.-B. et al. Interferometric scattering microscopy with polarization-selective dual detection scheme: capturing the orientational information of anisotropic nanometric objects. ACS Photonics 5, 797–804 (2018).

    Article  Google Scholar 

  95. Enoki, S. et al. High-speed angle-resolved imaging of a single gold nanorod with microsecond temporal resolution and one-degree angle precision. Anal. Chem. 87, 2079–2086 (2015).

    Article  Google Scholar 

  96. Monaghan, J. W. et al. Calcite-assisted localization and kinetics (CLocK) microscopy. J. Phys. Chem. Lett. 13, 10527–10533 (2022).

    Article  Google Scholar 

  97. Cheng, X. et al. Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nat. Cell Biol. 23, 859–869 (2021).

    Article  Google Scholar 

  98. Chandler, T., Shroff, H., Oldenbourg, R. & La Rivière, P. Spatio-angular fluorescence microscopy I. Basic theory. J. Opt. Soc. Am. A 36, 1334–1345 (2019).

    Google Scholar 

  99. Stachelek, P., MacKenzie, L., Parker, D. & Pal, R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat. Commun. 13, 553 (2022).

    Article  ADS  Google Scholar 

  100. Zhang, C. et al. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat. Commun. 15, 2 (2024).

    Article  ADS  Google Scholar 

  101. Cabriel, C., Monfort, T., Specht, C. G. & Izeddin, I. Event-based vision sensor for fast and dense single-molecule localization microscopy. Nat. Photon. 17, 1105–1113 (2023).

    Article  ADS  Google Scholar 

  102. Fujiwara, T. K. et al. Development of ultrafast camera-based single fluorescent-molecule imaging for cell biology. J. Cell Biol. 222, e202110160 (2023).

    Article  Google Scholar 

  103. Radmacher, N. et al. Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. Nat. Photon. 18, 1059–1066 (2024).

    Article  Google Scholar 

  104. Jouchet, P. et al. Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat. Photon. 15, 297–304 (2021).

    Article  ADS  Google Scholar 

  105. Zhang, B. et al. Vortex light field microscopy: 3D spectral single-molecule imaging with a twist. Optica 11, 1519–1525 (2024).

    Article  Google Scholar 

  106. Friedl, K. et al. Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. Cell Rep. Methods 3, 100571 (2023).

    Article  Google Scholar 

  107. Kim, J. et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat. Commun. 12, 1943 (2021).

    Article  ADS  Google Scholar 

  108. Trojanowicz, R., Douillard, L., Vargas, L. S., Charra, F. & Vassant, S. Optical characterization of a single molecule complete spatial orientation using intra-molecular triplet-triplet absorption. Phys. Chem. Chem. Phys. 26, 16350–16357 (2024).

    Article  Google Scholar 

  109. Hajj, B., Oudjedi, L., Fiche, J.-B., Dahan, M. & Nollmann, M. Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings. Sci. Rep. 7, 5284 (2017).

    Article  ADS  Google Scholar 

  110. Sims, R. R. et al. Single molecule light field microscopy. Optica 7, 1065–1072 (2020).

    Article  Google Scholar 

  111. Ye, H. et al. Polarization effects on the fluorescence emission of zebrafish neurons using light-sheet microscopy. Biomed. Opt. Express 13, 6733–6744 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge recent contributions to the field by and fruitful discussions with M. A. Alonso, L. A. Aleman-Castaneda, Y. Chen, C. Kumar, I. Herrera, M. Sison, B. Sun and Y. Qiu. This work was funded by Agence Nationale de la Recherche (ANR-20-CE42-0003, ANR-21-CE24-0014, France 2030 Investment Plan IDEC ANR-21-ESRE-0002, Investissements d’Avenir CENTURI ANR-16-CONV-0001, France BioImaging National Infrastructure ANR-10-INBS-04 to S.B.) and the National Institutes of Health (R35GM124858 to M.D.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sophie Brasselet or Matthew D. Lew.

Ethics declarations

Competing interests

The pixOL microscope mentioned in this work was invented by Tingting Wu and M.D.L. and is covered by US patent 11994470 B2 (2024), which was filed by and assigned to Washington University in St Louis. The raMVR microscope mentioned in this work was invented by Oumeng Zhang and M.D.L., and Washington University has filed a patent application covering the technology (PCT/US2021/063071). The duo-spot microscope mentioned in this work was invented by Tingting Wu, Tianben Ding and M.D.L., and Washington University has filed a patent application covering the technology (PCT/US2021/018235). The tri-spot microscope mentioned in this work was invented by Oumeng Zhang and M.D.L. and is covered by US patent 10761419 B2 (2020), which was filed by and assigned to Washington University in St Louis.

Peer review

Peer review information

Nature Photonics thanks Fang Huang and Bernd Rieger for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasselet, S., Lew, M.D. Single-molecule orientation and localization microscopy. Nat. Photon. 19, 925–937 (2025). https://doi.org/10.1038/s41566-025-01724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01724-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing