Abstract
Single-molecule localization microscopy (SMLM) offers enhanced spatial resolution in optical microscopy, providing detailed insights into the spatial organization of proteins in cells at the nanoscale. Over the past decade, SMLM has progressively incorporated the capability to retrieve the orientations of single molecules using their polarized dipolar emission pattern. Here we explore recent advancements in single-molecule orientation and localization microscopy (SMOLM), which yields super-resolved images of molecular three-dimensional (3D) orientations, wobble and 3D positions. This advancement opens possibilities to explore the nanoscale organization and conformation of biological molecules as well as to monitor and design local 3D optical fields in nanophotonics. We cover the principles of SMOLM, discuss recent advances and applications in biology and photonics, and finally highlight exciting future directions and challenges in the field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10, 194 (2021).
Alonso, M. A. Geometric descriptions for the polarization of nonparaxial light: a tutorial. Adv. Opt. Photon. 15, 176–235 (2023).
Li, Z. et al. Optical polarization manipulations with anisotropic nanostructures. PhotoniX 5, 30 (2024).
Li, X. et al. Polarimetric imaging through scattering media: a review. Front. Phys. 10, 815296 (2022).
Brasselet, S. & Alonso, M. A. Polarization microscopy: from ensemble structural imaging to single-molecule 3D orientation and localization microscopy. Optica 10, 1486–1510 (2023).
Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).
Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).
Ha, T., Enderle, T. H., Chemla, D. S., Selvin, P. R. & Weiss, S. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982 (1996).
Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021).
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).
Zhang, O. & Lew, M. D. Single-molecule orientation-localization microscopy: applications and approaches. Q. Rev. Biophys. 57, e17 (2024).
Wu, T. & Lew, M. D. in Coded Optical Imaging (ed. Liang, J.) 207–223 (Springer, 2024); https://doi.org/10.1007/978-3-031-39062-3_12
Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J. & Moerner, W. E. The role of molecular dipole orientation in single‐molecule fluorescence microscopy and implications for super‐resolution imaging. ChemPhysChem 15, 587–599 (2014).
Reinhardt, S. C. M. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).
Sahl, S. J. et al. Direct optical measurement of intramolecular distances with angstrom precision. Science 386, 180–187 (2024).
Daly, S. et al. High-density volumetric super-resolution microscopy. Nat. Commun. 15, 1940 (2024).
Saliba, N., Gagliano, G. & Gustavsson, A.-K. Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet. Nat. Commun. 15, 10187 (2024).
Backer, A. S., Lee, M. Y. & Moerner, W. E. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. Optica 3, 659 (2016).
Chandler, T., Mehta, S., Shroff, H., Oldenbourg, R. & La Rivière, P. J. Single-fluorophore orientation determination with multiview polarized illumination: modeling and microscope design. Opt. Express 25, 31309 (2017).
Thorsen, R. Ø., Hulleman, C. N., Rieger, B. & Stallinga, S. Photon efficient orientation estimation using polarization modulation in single-molecule localization microscopy. Biomed. Opt. Express 13, 2835–2858 (2022).
Chandler, T. et al. Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope. Proc. Natl Acad. Sci. USA 122, e2406679122 (2025).
Hulleman, C. N. et al. Fluorescence polarization control for on-off switching of single molecules at cryogenic temperatures. Small Methods 2, 1700323 (2018).
Böning, D., Wieser, F.-F. & Sandoghdar, V. Polarization-encoded colocalization microscopy at cryogenic temperatures. ACS Photonics 8, 194–201 (2021).
Backer, A. S. & Moerner, W. E. Extending single-molecule microscopy using optical Fourier processing. J. Phys. Chem. B 118, 8313–8329 (2014).
Backer, A. S. & Moerner, W. E. Determining the rotational mobility of a single molecule from a single image: a numerical study. Opt. Express 23, 4255–4276 (2015).
Stallinga, S. Effect of rotational diffusion in an orientational potential well on the point spread function of electric dipole emitters. J. Opt. Soc. Am. A 32, 213–223 (2015).
Chandler, T., Shroff, H., Oldenbourg, R. & La Rivière, P. Spatio-angular fluorescence microscopy III. Constrained angular diffusion, polarized excitation and high-NA imaging. J. Opt. Soc. Am. A 37, 1465–1479 (2020).
Herrera, I., Alemán-Castañeda, L. A., Brasselet, S. & Alonso, M. A. Stokes-based analysis for the estimation of 3D dipolar emission. J. Opt. Soc. Am. A 41, 2134–2148 (2024).
Lu, J., Mazidi, H., Ding, T., Zhang, O. & Lew, M. D. Single‐molecule 3D orientation imaging reveals nanoscale compositional heterogeneity in lipid membranes. Angew. Chem. Int. Ed. 59, 17572–17579 (2020).
Wu, T., Lu, J. & Lew, M. D. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. Optica 9, 505–511 (2022).
Hulleman, C. N. et al. Simultaneous orientation and 3D localization microscopy with a Vortex point spread function. Nat. Commun. 12, 5934 (2021).
Ding, T. & Lew, M. D. Single-molecule localization microscopy of 3D orientation and anisotropic wobble using a polarized vortex point spread function. J. Phys. Chem. B 125, 12718–12729 (2021).
Curcio, V., Alemán-Castañeda, L. A., Brown, T. G., Brasselet, S. & Alonso, M. A. Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation. Nat. Commun. 11, 5307 (2020).
Zhang, O., Zhou, W., Lu, J., Wu, T. & Lew, M. D. Resolving the three-dimensional rotational and translational dynamics of single molecules using radially and azimuthally polarized fluorescence. Nano Lett. 22, 1024–1031 (2022).
Fordey, T. et al. Single-shot three-dimensional orientation imaging of nanorods using spin to orbital angular momentum conversion. Nano Lett. 21, 7244–7251 (2021).
Zhang, O. et al. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope. Nat. Photon. 17, 179–186 (2022).
Munger, E., Sison, M. & Brasselet, S. Influence of the excitation polarization on single molecule 3D orientation imaging. Opt. Commun. 541, 129480 (2023).
Chen, Y., Qiu, Y. & Lew, M. D. Resolving the orientations of and angular separation between a pair of dipole emitters. Phys. Rev. Lett. 134, 093805 (2025).
Shaban, H. A., Valades-Cruz, C. A., Savatier, J. & Brasselet, S. Polarized super-resolution structural imaging inside amyloid fibrils using Thioflavine T. Sci Rep 7, 12482 (2017).
Wu, T., Lu, P., Rahman, M. A., Li, X. & Lew, M. D. Deep-SMOLM: deep learning resolves the 3D orientations and 2D positions of overlapping single molecules with optimal nanoscale resolution. Opt. Express 30, 36761 (2022).
Chao, J., Sally Ward, E. & Ober, R. J. Fisher information theory for parameter estimation in single molecule microscopy: tutorial. J. Opt. Soc. Am. A 33, B36–B57 (2016).
Zhang, O. & Lew, M. D. Single-molecule orientation localization microscopy I: fundamental limits. J. Opt. Soc. Am. A 38, 277–287 (2021).
Zhang, O. & Lew, M. D. Fundamental limits on measuring the rotational constraint of single molecules using fluorescence microscopy. Phys. Rev. Lett. 122, 198301 (2019).
Zhou, W., Wu, T. & Lew, M. D. Fundamental limits in measuring the anisotropic rotational diffusion of single molecules. J. Phys. Chem. A 128, 5808–5815 (2024).
Ferdman, B. et al. VIPR: vectorial implementation of phase retrieval for fast and accurate microscopic pixel-wise pupil estimation. Opt. Express 28, 10179 (2020).
Jouchet, P., Roy, A. R. & Moerner, W. E. Combining deep learning approaches and point spread function engineering for simultaneous 3D position and 3D orientation measurements of fluorescent single molecules. Opt. Commun. 542, 129589 (2023).
Valades Cruz, C. A. et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl Acad. Sci. USA 113, E820–E828 (2016).
Backer, A. S. et al. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. Sci. Adv. 5, eaav1083 (2019).
Ding, T., Wu, T., Mazidi, H., Zhang, O. & Lew, M. D. Single-molecule orientation localization microscopy for resolving structural heterogeneities between amyloid fibrils. Optica 7, 602–607 (2020).
Sarkar, A., Namboodiri, V. & Kumbhakar, M. Single-molecule orientation imaging reveals two distinct binding configurations on amyloid fibrils. J. Phys. Chem. Lett. 14, 4990–4996 (2023).
Rimoli, C. V., Valades-Cruz, C. A., Curcio, V., Mavrakis, M. & Brasselet, S. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. Nat. Commun. 13, 301 (2022).
Bruggeman, E. et al. POLCAM: instant molecular orientation microscopy for the life sciences. Nat. Methods 21, 1873–1883 (2024).
Zhang, P. et al. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods 15, 913–916 (2018).
Siemons, M. E., Kapitein, L. C. & Stallinga, S. Axial accuracy in localization microscopy with 3D point spread function engineering. Opt. Express 30, 28290 (2022).
Alemán-Castañeda, L. A. et al. Using fluorescent beads to emulate single fluorophores. J. Opt. Soc. Am. A 39, C167–C178 (2022).
Liu, S. et al. Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nat. Methods 21, 1082–1093 (2024).
Gutiérrez-Cuevas, R., Alemán-Castañeda, L. A., Herrera, I., Brasselet, S. & Alonso, M. A. Vectorial phase retrieval in super-resolution polarization microscopy. APL Photonics 9, 026106 (2024).
Simone, A. D., Corrie, J. E. T., Dale, R. E., Irving, M. & Fraternali, F. Conformation and dynamics of a rhodamine probe attached at two sites on a protein: implications for molecular structure determination in situ. J. Am. Chem. Soc. 130, 17120–17128 (2008).
Lewis, J. H. & Lu, Z. Resolution of ångström-scale protein conformational changes by analyzing fluorescence anisotropy. Nat. Struct. Mol. Biol. 26, 802–807 (2019).
Collot, M., Pfister, S. & Klymchenko, A. S. Advanced functional fluorescent probes for cell plasma membranes. Curr. Opin. Chem. Biol. 69, 102161 (2022).
Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc. Natl Acad. Sci. USA 113, E6352–E6361 (2016).
Martins, C. S. et al. Genetically encoded reporters of actin filament organization in living cells and tissues. Cell 188, 2540–2559.e27 (2025).
Mazal, H., Wieser, F.-F. & Sandoghdar, V. Deciphering a hexameric protein complex with Angstrom optical resolution. eLife 11, e76308 (2022).
Brockman, J. M. et al. Mapping the 3D orientation of piconewton integrin traction forces. Nat. Methods 15, 115–118 (2018).
Zhou, W. et al. Resolving the nanoscale structure of β-sheet peptide self-assemblies using single-molecule orientation–localization microscopy. ACS Nano 18, 8798–8810 (2024).
Sun, B., Ding, T., Zhou, W., Porter, T. S. & Lew, M. D. Single-molecule orientation imaging reveals the nano-architecture of amyloid fibrils undergoing growth and decay. Nano Lett. 24, 7276–7283 (2024).
Bongiovanni, M. N. et al. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat. Commun. 7, 13544 (2016).
Lee, J.-E. et al. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. Nano Lett. 18, 7494–7501 (2018).
Börner, R., Ehrlich, N., Hohlbein, J. & Hübner, C. G. Single molecule 3D orientation in time and space: a 6D dynamic study on fluorescently labeled lipid membranes. J. Fluoresc. 26, 963–975 (2016).
Erkamp, N. A. et al. Differential interactions determine anisotropies at interfaces of RNA-based biomolecular condensates. Nat. Commun. 16, 3463 (2025).
Gao, G., Sumrall, E. R. & Walter, N. G. Nanoscale domains govern local diffusion and aging within FUS condensates. Preprint at https://www.biorxiv.org/content/10.1101/2024.04.01.587651v2 (2025).
Wu, T. et al. Single-fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates. Nat. Phys 21, 778–786 (2025).
Tenopala-Carmona, F. et al. Orientation distributions of vacuum-deposited organic emitters revealed by single-molecule microscopy. Nat. Commun. 14, 6126 (2023).
Li, P. et al. Single-molecule nano-optoelectronics: insights from physics. Rep. Prog. Phys. 85, 086401 (2022).
Xu, X. et al. Tuning electrostatic gating of semiconducting carbon nanotubes by controlling protein orientation in biosensing devices. Angew. Chem. Int. Ed. 60, 20184–20189 (2021).
Guo, W. et al. Dipole orientation reveals single-molecule interactions and dynamics on 2D crystals. Preprint at https://arxiv.org/abs/2408.01207 (2024).
Kuzyk, A., Jungmann, R., Acuna, G. P. & Liu, N. DNA origami route for nanophotonics. ACS Photonics 5, 1151–1163 (2018).
Hübner, K. et al. Determining the in-plane orientation and binding mode of single fluorescent dyes in DNA origami structures. ACS Nano 15, 5109–5117 (2021).
Cervantes-Salguero, K. et al. Strategies for controlling the spatial orientation of single molecules tethered on DNA origami templates physisorbed on glass substrates: intercalation and stretching. Int. J. Mol. Sci. 23, 7690 (2022).
Adamczyk, A. K. et al. DNA self-assembly of single molecules with deterministic position and orientation. ACS Nano 16, 16924–16931 (2022).
Gopinath, A. et al. Absolute and arbitrary orientation of single-molecule shapes. Science 371, eabd6179 (2021).
Ghosh, A. et al. Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nat. Photon. 13, 860–865 (2019).
Córdova-Castro, R. M. et al. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas. Light Sci. Appl. 13, 7 (2024).
Bloksma, F. & Zijlstra, P. Imaging and localization of single emitters near plasmonic particles of different size, shape and material. J. Phys. Chem. C 125, 22084–22092 (2021).
Baiyasi, R. et al. PSF distortion in dye–plasmonic nanomaterial interactions: friend or foe? ACS Photonics 6, 699–708 (2019).
Huijben, T. A. P. M. et al. Point-spread function deformations unlock 3D localization microscopy on spherical nanoparticles. ACS Nano 18, 29832–29845 (2024).
Moon, G. et al. Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission. Light Sci. Appl. 12, 221 (2023).
Wang, M. et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat. Rev. Chem. 6, 681–704 (2022).
Neugebauer, M., Eismann, J. S., Bauer, T. & Banzer, P. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X 8, 021042 (2018).
Yang, D., Hu, H., Gao, H., Chen, J. & Zhan, Q. Mie scattering nanointerferometry for the reconstruction of tightly focused vector fields by polarization decomposition. Photonics 10, 496 (2023).
Eismann, J. S., Neugebauer, M., Mantel, K. & Banzer, P. Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer. Light Sci. Appl. 10, 223 (2021).
Neugebauer, M., Woźniak, P., Bag, A., Leuchs, G. & Banzer, P. Polarization-controlled directional scattering for nanoscopic position sensing. Nat. Commun. 7, 829–834 (2016).
Neugebauer, M., Banzer, P. & Nechayev, S. Emission of circularly polarized light by a linear dipole. Sci. Adv. 5, eaav7588 (2019).
Lee, I.-B. et al. Interferometric scattering microscopy with polarization-selective dual detection scheme: capturing the orientational information of anisotropic nanometric objects. ACS Photonics 5, 797–804 (2018).
Enoki, S. et al. High-speed angle-resolved imaging of a single gold nanorod with microsecond temporal resolution and one-degree angle precision. Anal. Chem. 87, 2079–2086 (2015).
Monaghan, J. W. et al. Calcite-assisted localization and kinetics (CLocK) microscopy. J. Phys. Chem. Lett. 13, 10527–10533 (2022).
Cheng, X. et al. Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nat. Cell Biol. 23, 859–869 (2021).
Chandler, T., Shroff, H., Oldenbourg, R. & La Rivière, P. Spatio-angular fluorescence microscopy I. Basic theory. J. Opt. Soc. Am. A 36, 1334–1345 (2019).
Stachelek, P., MacKenzie, L., Parker, D. & Pal, R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat. Commun. 13, 553 (2022).
Zhang, C. et al. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat. Commun. 15, 2 (2024).
Cabriel, C., Monfort, T., Specht, C. G. & Izeddin, I. Event-based vision sensor for fast and dense single-molecule localization microscopy. Nat. Photon. 17, 1105–1113 (2023).
Fujiwara, T. K. et al. Development of ultrafast camera-based single fluorescent-molecule imaging for cell biology. J. Cell Biol. 222, e202110160 (2023).
Radmacher, N. et al. Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. Nat. Photon. 18, 1059–1066 (2024).
Jouchet, P. et al. Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat. Photon. 15, 297–304 (2021).
Zhang, B. et al. Vortex light field microscopy: 3D spectral single-molecule imaging with a twist. Optica 11, 1519–1525 (2024).
Friedl, K. et al. Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. Cell Rep. Methods 3, 100571 (2023).
Kim, J. et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat. Commun. 12, 1943 (2021).
Trojanowicz, R., Douillard, L., Vargas, L. S., Charra, F. & Vassant, S. Optical characterization of a single molecule complete spatial orientation using intra-molecular triplet-triplet absorption. Phys. Chem. Chem. Phys. 26, 16350–16357 (2024).
Hajj, B., Oudjedi, L., Fiche, J.-B., Dahan, M. & Nollmann, M. Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings. Sci. Rep. 7, 5284 (2017).
Sims, R. R. et al. Single molecule light field microscopy. Optica 7, 1065–1072 (2020).
Ye, H. et al. Polarization effects on the fluorescence emission of zebrafish neurons using light-sheet microscopy. Biomed. Opt. Express 13, 6733–6744 (2022).
Acknowledgements
We acknowledge recent contributions to the field by and fruitful discussions with M. A. Alonso, L. A. Aleman-Castaneda, Y. Chen, C. Kumar, I. Herrera, M. Sison, B. Sun and Y. Qiu. This work was funded by Agence Nationale de la Recherche (ANR-20-CE42-0003, ANR-21-CE24-0014, France 2030 Investment Plan IDEC ANR-21-ESRE-0002, Investissements d’Avenir CENTURI ANR-16-CONV-0001, France BioImaging National Infrastructure ANR-10-INBS-04 to S.B.) and the National Institutes of Health (R35GM124858 to M.D.L.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The pixOL microscope mentioned in this work was invented by Tingting Wu and M.D.L. and is covered by US patent 11994470 B2 (2024), which was filed by and assigned to Washington University in St Louis. The raMVR microscope mentioned in this work was invented by Oumeng Zhang and M.D.L., and Washington University has filed a patent application covering the technology (PCT/US2021/063071). The duo-spot microscope mentioned in this work was invented by Tingting Wu, Tianben Ding and M.D.L., and Washington University has filed a patent application covering the technology (PCT/US2021/018235). The tri-spot microscope mentioned in this work was invented by Oumeng Zhang and M.D.L. and is covered by US patent 10761419 B2 (2020), which was filed by and assigned to Washington University in St Louis.
Peer review
Peer review information
Nature Photonics thanks Fang Huang and Bernd Rieger for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Brasselet, S., Lew, M.D. Single-molecule orientation and localization microscopy. Nat. Photon. 19, 925–937 (2025). https://doi.org/10.1038/s41566-025-01724-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01724-y