Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards efficient, scalable and stable perovskite/silicon tandem solar cells

Abstract

Perovskite/silicon tandem solar cells (TSCs) have emerged as a promising technology for photovoltaic energy harvesting and have already exceeded the limits of traditional single-junction solar cells. Despite recent power conversion efficiency values nearing 35%, perovskite/silicon TSCs still exhibit a considerable efficiency deficit relative to their theoretical upper limit. Scientific and technological challenges related to the long-term operational stability and scalability must also be addressed for this technology to be commercialized. This Review provides an overview of state-of-the-art perovskite/silicon TSCs with particular attention to three key areas: efficiency, stability and scalability. The Review concludes with a critical overview of the remaining challenges and future perspectives for the further development of this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device configurations, working mechanism and efficiency evolution of perovskite/Si TSCs.
Fig. 2: Electrical and optical losses in perovskite/Si TSCs.
Fig. 3: Progress towards scalable fabrication of large-area perovskite/Si tandems.
Fig. 4: Operational stability of perovskite/Si TSCs.

Similar content being viewed by others

References

  1. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  ADS  Google Scholar 

  2. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  Google Scholar 

  3. Ehrler, B. et al. Photovoltaics reaching for the Shockley–Queisser limit. ACS Energy Lett. 5, 3029–3033 (2020).

    Article  Google Scholar 

  4. Yamaguchi, M., Dimroth, F., Geisz, J. F. & Ekins-Daukes, N. J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 129, 240901 (2021).

    Article  ADS  Google Scholar 

  5. Geisz, J. F. et al. Multi-junction solar cells paving the metamorphic concentrator solar cell. IEEE J. Photovolt. 8, 626–632 (2018).

    Article  Google Scholar 

  6. France, R. M. et al. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule 6, 1121–1135 (2022).

    Article  Google Scholar 

  7. Zheng, J. et al. Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ. Sci. 11, 2432–2443 (2018).

    Article  Google Scholar 

  8. Green, M. A. et al. Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. https://doi.org/10.1002/pip.3919 (2025).

    Article  Google Scholar 

  9. Steiner, M. A. et al. High efficiency inverted gaas and GaInP/GaAs solar cells with strain-balanced GaInAs/GaAsP quantum wells. Adv. Energy Mater. 11, 2002874 (2021).

    Article  Google Scholar 

  10. Fu, F. et al. Monolithic perovskite–silicon tandem solar cells: from the lab to fab? Adv. Mater. 34, 2106540 (2022).

    Article  Google Scholar 

  11. Ying, Z., Yang, X., Wang, X. & Ye, J. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv. Mater. 36, 2311501 (2024).

    Article  Google Scholar 

  12. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  Google Scholar 

  13. Chi, W., Banerjee, S. K., Jayawardena, K. G. D. I., Silva, S. R. P. & Seok, S. I. Perovskite/silicon tandem solar cells: choice of bottom devices and recombination layers. ACS Energy Lett. 8, 1535–1550 (2023).

    Article  Google Scholar 

  14. Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article  ADS  Google Scholar 

  15. Gota, F., Langenhorst, M., Schmager, R., Lehr, J. & Paetzold, U. W. Energy yield advantages of three-terminal perovskite–silicon tandem photovoltaics. Joule 4, 2387–2403 (2020).

    Article  Google Scholar 

  16. De Bastiani, M. et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat. Energy 6, 167–175 (2021).

    Article  ADS  Google Scholar 

  17. Dai, L. et al. Three-terminal monolithic perovskite/silicon tandem solar cell exceeding 29% power conversion efficiency. ACS Energy Lett. 8, 3839–3842 (2023).

    Article  Google Scholar 

  18. Fang, Z. et al. Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells. Nat. Commun. 15, 10554 (2024).

    Article  Google Scholar 

  19. Futscher, M. H. & Ehrler, B. Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016).

    Article  Google Scholar 

  20. Hou, F. et al. Monolithic perovskite/silicon tandem solar cells: a review of the present status and solutions toward commercial application. Nano Energy 124, 109476 (2024).

    Article  Google Scholar 

  21. Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    Article  ADS  Google Scholar 

  22. Chen, B. et al. Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 12, 2003628 (2021).

    Article  Google Scholar 

  23. Jošt, M. et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 11, 3511–3523 (2018).

    Article  Google Scholar 

  24. Schneider, B. W., Lal, N. N., Baker-Finch, S. & White, T. P. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express 22, A1422–A1430 (2014).

    Article  ADS  Google Scholar 

  25. Kanda, H. et al. Effect of silicon surface for perovskite/silicon tandem solar cells: flat or textured? ACS Appl. Mater. Interfaces 10, 35016–35024 (2018).

    Article  Google Scholar 

  26. Khan, D., Qu, G., Muhammad, I., Tang, Z. & Xu, Z.-X. Overcoming two key challenges in monolithic perovskite–silicon tandem solar cell development: wide bandgap and textured substrate—a comprehensive review. Adv. Energy Mater. 13, 2302124 (2023).

    Article  Google Scholar 

  27. Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  Google Scholar 

  28. Fu, F. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2016).

    Article  ADS  Google Scholar 

  29. Shi, Y., Berry, J. J. & Zhang, F. Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 9, 1305–1330 (2024).

    Article  Google Scholar 

  30. Bush, K. A. et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett. 3, 2173–2180 (2018).

    Article  Google Scholar 

  31. Morales-Masis, M., Nicolas, S. M. D., Holovsky, J., Wolf, S. D. & Ballif, C. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells. IEEE J. Photovolt. 5, 1340–1347 (2015).

    Article  Google Scholar 

  32. Chen, B. et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4. Joule 3, 177–190 (2019).

    Article  Google Scholar 

  33. Werner, J. et al. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells. Appl. Phys. Lett. 109, 233902 (2016).

    Article  ADS  Google Scholar 

  34. Sahli, F. et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2018).

    Article  Google Scholar 

  35. Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article  ADS  Google Scholar 

  36. Mercaldo, L. V. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells with nanocrystalline Si/SiOx tunnel junction. Energies 14, 7848 (2021).

    Article  Google Scholar 

  37. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  ADS  Google Scholar 

  38. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  Google Scholar 

  39. Shanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P. & Das, N. Anti-reflective coating materials: a holistic review from pv perspective. Energies 13, 2631 (2020).

    Article  Google Scholar 

  40. Hou, F. et al. Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell. Nano Energy 56, 234–240 (2019).

    Article  Google Scholar 

  41. Spence, M. et al. A comparison of different textured and non-textured anti-reflective coatings for planar monolithic silicon-perovskite tandem solar cells. ACS Appl. Energy Mater. 5, 5974–5982 (2022).

    Article  Google Scholar 

  42. Lee, H., Yi, A., Choi, J., Ko, D.-H. & Jung Kim, H. Texturing of polydimethylsiloxane surface for anti-reflective films with super-hydrophobicity in solar cell application. Appl. Surf. Sci. 584, 152625 (2022).

    Article  Google Scholar 

  43. Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).

    Article  Google Scholar 

  44. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  ADS  Google Scholar 

  45. Xia, R. et al. Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells. J. Mater. Chem. A 9, 21939–21947 (2021).

    Article  Google Scholar 

  46. Kim, G. et al. A thermally induced perovskite crystal control strategy for efficient and photostable wide-bandgap perovskite solar cells. Sol. RRL 4, 2000033 (2020).

    Article  Google Scholar 

  47. Luo, X. et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023).

    Article  Google Scholar 

  48. Wang, Z. et al. Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv. Mater. 36, 2407681 (2024).

    Article  Google Scholar 

  49. Wang, L. et al. Highly efficient monolithic perovskite/topcon silicon tandem solar cells enabled by ‘halide locking’. Adv. Mater. 37, 2416150 (2025).

    Article  Google Scholar 

  50. Yang, G. et al. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photon. 16, 588–594 (2022).

    Article  ADS  Google Scholar 

  51. Zhang, H., Pfeifer, L., Zakeeruddin, S. M., Chu, J. & Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023).

    Article  Google Scholar 

  52. Wang, P. et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 32, 1905766 (2020).

    Article  Google Scholar 

  53. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  Google Scholar 

  54. Mao, L. et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34, 2206193 (2022).

    Article  Google Scholar 

  55. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  Google Scholar 

  56. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  ADS  Google Scholar 

  57. Li, X. et al. Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano Micro Lett. 17, 141 (2025).

    Article  Google Scholar 

  58. Liu, Z. et al. Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell. Adv. Mater. 36, 2308370 (2024).

    Article  Google Scholar 

  59. Liu, J. et al. Efficient and stable perovskite–silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  ADS  Google Scholar 

  60. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  ADS  Google Scholar 

  61. Wang, S. et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%. eScience 2, 339–346 (2022).

    Article  Google Scholar 

  62. Wang, S. et al. Inorganic perovskite surface reconfiguration for stable inverted solar cells with 20.38% efficiency and its application in tandem devices. Adv. Mater. 35, 2300581 (2023).

    Article  Google Scholar 

  63. Yang, G. et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15, 681–689 (2021).

    Article  ADS  Google Scholar 

  64. Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    Article  ADS  Google Scholar 

  65. Yang, G. et al. Shunt mitigation toward efficient large-area perovskite–silicon tandem solar cells. Cell Rep. Phys. Sci. 4, 101628 (2023).

    Article  Google Scholar 

  66. Liu, J. et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635, 596–603 (2024).

    Article  Google Scholar 

  67. Allen, T. G., Ugur, E., Aydin, E., Subbiah, A. S. & De Wolf, S. A practical efficiency target for perovskite/silicon tandem solar cells. ACS Energy Lett. 10, 238–245 (2025).

    Article  Google Scholar 

  68. Chen, Y. et al. Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385, 554–560 (2024).

    Article  Google Scholar 

  69. Zheng, J. et al. 21.8% efficient monolithic perovskite/homo-junction-silicon tandem solar cell on 16 cm2. ACS Energy Lett. 3, 2299–2300 (2018).

    Article  Google Scholar 

  70. Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 31, 651–663 (2023).

    Article  Google Scholar 

  71. Green, M. A. et al. Solar cell efficiency tables (version 65). Prog. Photovolt. Res. Appl. 33, 3–15 (2025).

    Article  Google Scholar 

  72. Ugur, E. et al. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science 385, 533–538 (2024).

    Article  Google Scholar 

  73. Subbiah, A. S. et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 5, 3034–3040 (2020).

    Article  Google Scholar 

  74. Roß, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).

    Article  Google Scholar 

  75. Zheng, X. et al. Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air. Nat. Commun. 15, 4907 (2024).

    Article  ADS  Google Scholar 

  76. Yin, J. et al. Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. J. Mater. Chem. A 4, 13203–13210 (2016).

    Article  Google Scholar 

  77. De Bastiani, M. et al. All set for efficient and reliable perovskite/silicon tandem photovoltaic modules? Sol. RRL 6, 2100493 (2022).

    Article  Google Scholar 

  78. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  Google Scholar 

  79. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  ADS  Google Scholar 

  80. Kerner, R. A., Xu, Z., Larson, B. W. & Rand, B. P. The role of halide oxidation in perovskite halide phase separation. Joule 5, 2273–2295 (2021).

    Article  Google Scholar 

  81. Yang, G. et al. Reductive cation for scalable wide-bandgap perovskite solar cells in ambient air. Nat. Sustain. 8, 456–463 (2025).

    Article  Google Scholar 

  82. Wu, S. et al. Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite–organic tandem solar cells. Nat. Energy 9, 411–421 (2024).

    Article  ADS  Google Scholar 

  83. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  ADS  Google Scholar 

  84. Fang, Z., Nie, T., Liu, S. & Ding, J. Overcoming phase segregation in wide-bandgap perovskites: from progress to perspective. Adv. Funct. Mater. 34, 2404402 (2024).

    Article  Google Scholar 

  85. Kan, C. et al. Efficient and stable perovskite–silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nat. Photon. 19, 63–70 (2024).

    Article  Google Scholar 

  86. Azmi, R. et al. Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  ADS  Google Scholar 

  87. Toniolo, F. et al. Efficient and reliable encapsulation for perovskite/silicon tandem solar modules. Nanoscale 15, 16984–16991 (2023).

    Article  Google Scholar 

  88. Mu, L. et al. Innovative materials for lamination encapsulation in perovskite solar cells. Adv. Funct. Mater. 35, 2415353 (2025).

    Article  Google Scholar 

  89. Chu, Q.-Q. et al. Encapsulation: the path to commercialization of stable perovskite solar cells. Matter 6, 3838–3863 (2023).

    Article  Google Scholar 

  90. De Bastiani, M. et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett. 7, 827–833 (2022).

    Article  Google Scholar 

  91. Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).

    Article  Google Scholar 

  92. Aydin, E. et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5, 851–859 (2020).

    Article  ADS  Google Scholar 

  93. Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021).

    Article  Google Scholar 

  94. De Bastiani, M. et al. Toward stable monolithic perovskite/silicon tandem photovoltaics: a six-month outdoor performance study in a hot and humid climate. ACS Energy Lett. 6, 2944–2951 (2021).

    Article  Google Scholar 

  95. Babics, M. et al. One-year outdoor operation of monolithic perovskite/silicon tandem solar cells. Cell Rep. Phys. Sci. 4, 101280 (2023).

    Article  Google Scholar 

  96. Chojniak, D. et al. Outdoor measurements of a full-size bifacial Pero/Si tandem module under different spectral conditions. Prog. Photovolt. Res. Appl. 32, 219–231 (2024).

    Article  Google Scholar 

  97. Kamino, B. A. et al. Low-temperature screen-printed metallization for the scale-up of two-terminal perovskite–silicon tandems. ACS Appl. Energy Mater. 2, 3815–3821 (2019).

    Article  Google Scholar 

  98. Walter, A. et al. CSEM Scientific and Technical Report 2019 (CSEM, 2019); https://www.csem.ch/pdf/128428?name=CSEM-STR-2019-p69.pdf

  99. Chen, B. et al. A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with >27% efficiency. ACS Energy Lett. 7, 2771–2780 (2022).

    Article  Google Scholar 

  100. Xu, Q. et al. Conductive passivator for efficient monolithic perovskite/silicon tandem solar cell on commercially textured silicon. Adv. Energy Mater. 12, 2202404 (2022).

    Article  Google Scholar 

  101. Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article  Google Scholar 

  102. Hyun, J. Y. et al. Perovskite/silicon tandem solar cells with a voc of 1784 mV based on an industrially feasible 25 cm2 TOPCon silicon cell. ACS Appl. Energy Mater. 5, 5449–5456 (2022).

    Article  Google Scholar 

  103. Zheng, J. et al. Efficient monolithic perovskite–Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energy Environ. Sci. 16, 1223–1233 (2023).

    Article  Google Scholar 

  104. Qiang, Z. et al. A scalable method for fabricating monolithic perovskite/silicon tandem solar cells based on low-cost industrial silicon bottom cells. Chem. Eng. J. 495, 153422 (2024).

    Article  Google Scholar 

  105. Li, Y. et al. CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell. Nano Energy 122, 109285 (2024).

    Article  Google Scholar 

  106. Tockhorn, P. et al. Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17, 1214–1221 (2022).

    Article  ADS  Google Scholar 

  107. Zhang, X. et al. Advances in inverted perovskite solar cells. Nat. Photon. 18, 1243–1253 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

G.Y. acknowledges funding support from the start-up fund provided by PolyU (1-BEBB), PRI strategic Grant (1-CDJ7), RISE strategic Grant (U-CDCC) and RIAM critical-mass strategic fund (1-CDLF). G.L. acknowledges the financial support from the Research Grants Council of Hong Kong (project numbers 15307922, C7018-20G and C4005-22Y), the Hong Kong Innovation and Technology Commission (ITF-TCFS GHP/380/22GD), the Hong Kong Polytechnic University (the Sir Sze-yuen Chung Endowed Professorship Fund (8-8480), PRI strategic Grant (1-CD7X), and RISE strategic Grant (Q-CDBK). This work was supported by National Natural Science Foundation of China (52302333), Guangdong Basic and Applied Basic Research Foundation (2023A1515012788) and Shenzhen Science and Technology Program (KQTD20221101093647058, ZDSYS20210706144000003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Yang, Yang Bai, Jinsong Huang or Gang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Deng, C., Li, C. et al. Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nat. Photon. 19, 913–924 (2025). https://doi.org/10.1038/s41566-025-01732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01732-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing