Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically triggered spin–photon devices in silicon

Abstract

Quantum networking and computing technologies demand scalable hardware with high-speed control for large systems of quantum devices. Solid-state platforms have emerged as promising candidates, offering scalable fabrication for a wide range of qubits. Architectures based on spin–photon interfaces allow for highly connected quantum networks over photonic links, enabling entanglement distribution for quantum networking and distributed quantum computing protocols. With the potential to address these demands, optically active spin defects in silicon are one proposed platform for building quantum technologies. Here we electrically excite the silicon T centre in integrated optoelectronic devices that combine nanophotonic waveguides and cavities with p–i–n diodes. We observe single-photon electroluminescence from a cavity-coupled T centre with g(2)(0) = 0.05(2). Further, we use the electrically triggered emission to herald the electron spin state, initializing it with 92(8)% post-selected fidelity. This shows electrically injected single-photon emission from a silicon colour centre and a new method of heralded spin initialization with electrical excitation. These findings present a new telecommunications-band light source for silicon and a highly parallel control method for T centre quantum processors, advancing the T centre as a versatile defect for scalable quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated optoelectronic devices for control of silicon T centres.
Fig. 2: Single-photon EL from a cavity-coupled T centre.
Fig. 3: Optoelectronic spin initialization.

Similar content being viewed by others

Data availability

The data that support this work are available from the corresponding author upon reasonable request.

References

  1. Simmons, S. Scalable fault-tolerant quantum technologies with silicon color centers. PRX Quantum 5, 010102 (2024).

    Article  ADS  Google Scholar 

  2. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516 (2018).

    Article  ADS  Google Scholar 

  3. Yu, Y. et al. Telecom-band quantum dot technologies for long-distance quantum networks. Nat. Nanotechnol. 18, 1389 (2023).

    Article  ADS  Google Scholar 

  4. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91 (2013).

    Article  ADS  Google Scholar 

  5. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259 (2021).

    Article  ADS  Google Scholar 

  6. Castelletto, S. & Boretti, A. Silicon carbide color centers for quantum applications. J. Phys.: Photon. 2, 022001 (2020).

    Google Scholar 

  7. Bergeron, L. et al. Silicon-integrated telecommunications photon-spin interface. PRX Quantum 1, 020301 (2020).

    Article  Google Scholar 

  8. Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266 (2022).

    Article  ADS  Google Scholar 

  9. Johnston, A., Felix-Rendon, U., Wong, Y.-E. & Chen, S. Cavity-coupled telecom atomic source in silicon. Nat. Commun. 15, 2350 (2024).

    Article  ADS  Google Scholar 

  10. Xiong, Y. et al. Computationally driven discovery of T center-like quantum defects in silicon. J. Am. Chem. Soc. 146, 30046 (2024).

    Article  ADS  Google Scholar 

  11. Higginbottom, D. B. et al. Memory and transduction prospects for silicon T center devices. PRX Quantum 4, 020308 (2023).

    Article  ADS  Google Scholar 

  12. Afzal, F. et al. Distributed quantum computing in silicon. Preprint at https://arxiv.org/abs/2406.01704 (2024).

  13. Shekhar, S. et al. Roadmapping the next generation of silicon photonics. Nat. Commun. 15, 751 (2024).

    Article  ADS  Google Scholar 

  14. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    Article  ADS  Google Scholar 

  15. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72 (2012).

    Article  ADS  Google Scholar 

  16. Drmota, P. et al. Verifiable blind quantum computing with trapped ions and single photons. Phys. Rev. Lett. 132, 150604 (2024).

    Article  ADS  Google Scholar 

  17. Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573 (2024).

    Article  ADS  Google Scholar 

  18. MacQuarrie, E. R. et al. Generating T centres in photonic silicon-on-insulator material by ion implantation. New J. Phys. 23, 103008 (2021).

    Article  ADS  Google Scholar 

  19. DeAbreu, A. et al. Waveguide-integrated silicon T centres. Opt. Express 31, 15045 (2023).

    Article  ADS  Google Scholar 

  20. Lee, C.-M. et al. High-efficiency single photon emission from a silicon T-center in a nanobeam. ACS Photon. 10, 3844 (2023).

    Article  Google Scholar 

  21. Islam, F. et al. Cavity-enhanced emission from a silicon T center. Nano Lett. 24, 319 (2023).

    Article  ADS  Google Scholar 

  22. Dhaliah, D., Xiong, Y., Sipahigil, A., Griffin, S. M. & Hautier, G. First-principles study of the T center in silicon. Phys. Rev. Mater. 6, L053201 (2022).

    Article  ADS  Google Scholar 

  23. Clear, C. et al. Optical-transition parameters of the silicon T center. Phys. Rev. Appl. 22, 064014 (2024).

    Article  ADS  Google Scholar 

  24. Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225 (2019).

    Article  ADS  Google Scholar 

  25. de las Casas, C. F. et al. Stark tuning and electrical charge state control of single divacancies in silicon carbide. Appl. Phys. Lett. 111, 262403 (2017).

    Article  ADS  Google Scholar 

  26. Cadiz, F. et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 18, 2381 (2018).

    Article  ADS  Google Scholar 

  27. Lohrmann, A. et al. Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).

    Article  ADS  Google Scholar 

  28. Widmann, M. et al. Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device. Nano Lett. 19, 7173 (2019).

    Article  ADS  Google Scholar 

  29. Rieger, M. et al. Fast optoelectronic charge state conversion of silicon vacancies in diamond. Sci. Adv. 10, eadl4265 (2024).

    Article  Google Scholar 

  30. Niethammer, M. et al. Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 10, 5569 (2019).

    Article  ADS  Google Scholar 

  31. Siyushev, P. et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 363, 728 (2019).

    Article  ADS  Google Scholar 

  32. Buckley, S. et al. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. Appl. Phys. Lett. 111, 141101 (2017).

    Article  ADS  Google Scholar 

  33. Ebadollahi, N. et al. Fabrication of silicon W and G center embedded light-emitting diodes for electroluminescence. J. Vac. Sci. Technol. B 42, 062208 (2024).

    Article  Google Scholar 

  34. Day, A. M. et al. Electrical manipulation of telecom color centers in silicon. Nat. Commun. 15, 4722 (2024).

    Article  ADS  Google Scholar 

  35. Chartrand, C. et al. Highly enriched 28Si reveals remarkable optical linewidths and fine structure for well-known damage centers. Phys. Rev. B 98, 195201 (2018).

    Article  ADS  Google Scholar 

  36. Marchetti, R. et al. High-efficiency grating-couplers: demonstration of a new design strategy. Sci. Rep. 7, 16670 (2017).

    Article  ADS  Google Scholar 

  37. Quan, Q. & Loncar, M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 19, 18529 (2011).

    Article  ADS  Google Scholar 

  38. Irion, E., Burger, N., Thonke, K. & Sauer, R. The defect luminescence spectrum at 0.9351 eV in carbon-doped heat-treated or irradiated silicon. J. Phys. C Solid State Phys. 18, 5069 (1985).

    Article  ADS  Google Scholar 

  39. Davies, G. The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83 (1989).

    Article  ADS  Google Scholar 

  40. Bowness, C. et al. Laser-induced spectral diffusion and excited-state mixing of silicon T centres. Preprint at https://arxiv.org/abs/2504.09908 (2025).

  41. Zhang, X. et al. Laser-induced spectral diffusion of T centers in silicon nanophotonic devices. Preprint at https://arxiv.org/abs/2504.08898 (2025).

  42. Komza, L. et al. Indistinguishable photons from an artificial atom in silicon photonics. Nat. Commun. 15, 6920 (2024).

    Article  ADS  Google Scholar 

  43. Ivanov, V. et al. Effect of localization on photoluminescence and zero-field splitting of silicon color centers. Phys. Rev. B 106, 134107 (2022).

    Article  ADS  Google Scholar 

  44. Laccotripes, P. et al. Spin-photon entanglement with direct photon emission in the telecom C-band. Nat. Commun. 15, 9740 (2024).

    Article  ADS  Google Scholar 

  45. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  46. Van Dam, W., Mykhailova, M. & Soeken, M. Reversible logic synthesis via symbolic reachability analysis. In Proc. SC ’23 Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis 1414–1419 (ACM, 2023).

  47. Zheng, J. et al. An on-chip photon-counting reconstructive spectrometer with tailored cascaded detector array. Adv. Devices Instrum. 4, 0021 (2023).

    Article  ADS  Google Scholar 

  48. Bohuslavskyi, H. et al. Scalable on-chip multiplexing of silicon single and double quantum dots. Commun. Phys. 7, 323 (2024).

    Article  Google Scholar 

  49. Day, A. M. et al. Probing negative differential resistance in silicon with a P-I-N diode-integrated T center ensemble. Preprint at https://arxiv.org/abs/2501.11888 (2025).

  50. Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).

  51. Bogaerts, W., Dumon, P., Thourhout, D. V. & Baets, R. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 32, 2801 (2007).

    Article  ADS  Google Scholar 

  52. Beveratos, A. et al. Room temperature stable single-photon source. Eur. Phys. J. D 18, 191 (2002).

    Article  ADS  Google Scholar 

  53. Laferriére, P. et al. Position-controlled telecom single photon emitters operating at elevated temperatures. Nano Lett. 23, 962 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Integrated Photonics team at Photonic Inc. for their contributions to the design and fabrication of the silicon chip presented in this work. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the New Frontiers in Research Fund (NFRF), the Canada Research Chairs program (CRC), the Canada Foundation for Innovation (CFI), the B.C. Knowledge Development Fund (BCKDF), the Quantum Information Science program at the Canadian Institute for Advanced Research (CIFAR), and Photonic Inc. S.A.M. acknowledges support from NSERC (PDF-587831-2024). S.S. is supported by the Arthur B. McDonald Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.D., S.S. and D.B.H. designed the experiment. M.D. and F.A. designed the samples used in the study. I.M. and N.J. fabricated the samples. C.C. assisted in conceiving the experiment and device design. M.D., C.B., S.A.M. and M.G. built the measurement apparatus. M.D., S.A.M. and E.H. measured the diode characteristics. M.D. measured the EL, lifetime, photon correlations and spin initialization SPAM fidelity. S.A.M., C.D. and M.L.W.T. advised on design and analysis. All authors participated in preparation of the manuscript.

Corresponding author

Correspondence to Daniel B. Higginbottom.

Ethics declarations

Competing interests

M.D., C.B., S.A.M., C.C., M.G., I.M., F.A., C.D., N.J., S.S. and D.B.H are current or recent employees of and/or have a financial interest in Photonic Inc., a quantum technology company. C.B., C.C., I.M., F.A., C.D., N.J., M.L.W.T., S.S. and D.B.H. have a financial interest in Photonic Inc. E.H. declares no competing interests.

Peer review

Peer review information

Nature Photonics thanks Fedor Jelezko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VII, Figs. 1–14 and Tables 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobinson, M., Bowness, C., Meynell, S.A. et al. Electrically triggered spin–photon devices in silicon. Nat. Photon. 19, 1132–1137 (2025). https://doi.org/10.1038/s41566-025-01752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01752-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing