Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-shot phase diversity wavefront sensing in deep turbulence via metasurface optics

Abstract

Free-space optical communication systems offer high-bandwidth, secure communication with minimal capital costs. Adaptive optics are typically added to these systems to decrease atmospheric channel losses; however, the performance of traditional adaptive optics wavefront sensors degrades in long-range, deep-turbulence conditions. Alternative wavefront sensors using phase diversity can successfully reconstruct wavefronts in deep turbulence, but current implementations require bulky setups with high latency. Here we use a nanostructured birefringent metasurface optic that enables low-latency phase diversity wavefront sensing in a compact form factor. We prove the effectiveness of this approach in mid-to-high turbulence (Rytov numbers from 0.2 to 0.6) through simulation and experimental demonstration. In both cases, an average 16-fold increase in signal from the corrected beam is obtained. We also demonstrate benefits such as noise tolerance and complex field reconstruction with high resolution. Our approach opens a pathway for compact, robust wavefront sensing that enhances range and accuracy of free-space optical communication systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of wavefront sensing techniques.
Fig. 2: Metasurface design and fabrication.
Fig. 3: Model training pipeline and simulation results.
Fig. 4: Experimental demonstration.

Data availability

The generated datasets used for training and captured simulated and experimental PSFs are available from the corresponding author upon request.

Code availability

The code for data generation is available from the corresponding author upon reasonable request.

References

  1. Al-Gailani, S. A. et al. A survey of Free Space Optics (FSO) communication systems, links, and networks. IEEE Access 9, 7353–7373 (2021).

    Article  Google Scholar 

  2. Barchers, J. D., Fried, D. L. & Link, D. J. Evaluation of the performance of Hartmann sensors in strong scintillation. Appl. Opt. 41, 1012–1021 (2002).

    Article  ADS  Google Scholar 

  3. Crepp, J. R., Letchev, S. O., Potier, S. J., Follansbee, J. H. & Tusay, N. T. Measuring phase errors in the presence of scintillation. Opt. Express 28, 37721–37733 (2020).

    Article  ADS  Google Scholar 

  4. Huang, Z. & Cao, L. Quantitative phase imaging based on holography: trends and new perspectives. Light Sci. Appl. 13, 145 (2024).

    Article  ADS  Google Scholar 

  5. Poon, T.-C. Digital Holography and Three-Dimensional Display (Springer, New York, 2006).

  6. Cumming, B. P. & Gu, M. Direct determination of aberration functions in microscopy by an artificial neural network. Opt. Express 28, 14511–14521 (2020).

    Article  ADS  Google Scholar 

  7. Yazdani, R. & Fallah, H. Wavefront sensing for a Shack–Hartmann sensor using phase retrieval based on a sequence of intensity patterns. Appl. Opt. 56, 1358–1364 (2017).

    Article  ADS  Google Scholar 

  8. Wu, Y., Sharma, M. K. & Veeraraghavan, A. WISH: wavefront imaging sensor with high resolution. Light Sci. Appl. 8, 44 (2019).

    Article  ADS  Google Scholar 

  9. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  10. Ding, Y., Fan, F., Tian, Z. & Wang, Z. L. Sublimation-induced shape evolution of silver cubes. Small 5, 2812–2815 (2009).

    Article  Google Scholar 

  11. Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article  ADS  Google Scholar 

  12. Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    Article  ADS  Google Scholar 

  13. Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018).

    Article  ADS  Google Scholar 

  14. Ji, A. et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. https://doi.org/10.1038/s41467-022-34197-6 (2022).

    Article  Google Scholar 

  15. Yi, S. et al. Angle-based wavefront sensing enabled by the near fields of flat optics. Nat. Commun. 12, 6002 (2021).

    Article  ADS  Google Scholar 

  16. Go, G.-H. et al. Meta Shack–Hartmann wavefront sensor with large sampling density and large angular field of view: phase imaging of complex objects. Light Sci. Appl. 13, 187 (2024).

    Article  ADS  Google Scholar 

  17. Yang, Z. et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9, 4607 (2018).

    Article  ADS  Google Scholar 

  18. Wu, Q. et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023).

    Article  ADS  Google Scholar 

  19. Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. & Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photon. 14, 109–114 (2020).

    Article  ADS  Google Scholar 

  20. Li, L. et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv. https://doi.org/10.1126/sciadv.adl0501 (2024).

    Article  Google Scholar 

  21. Engay, E., Huo, D., Malureanu, R., Bunea, A.-I. & Lavrinenko, A. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett 21, 3820–3826 (2021).

    Article  ADS  Google Scholar 

  22. Zuo, C. et al. Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020).

    Article  Google Scholar 

  23. Ferrari, J. A., Ayubi, G. A., Flores, J. L. & Perciante, C. D. Transport of intensity equation: validity limits of the usually accepted solution. Opt. Commun. 318, 133–136 (2014).

    Article  ADS  Google Scholar 

  24. Yin, X. et al. Evaluation of the communication quality of free-space laser communication based on the power-in-the-bucket method. Appl. Opt. 57, 573–581 (2018).

    Article  ADS  Google Scholar 

  25. Zhang, P. et al. High-accuracy wavefront sensing by phase diversity technique with bisymmetric defocuses diversity phase. Sci. Rep. 7, 15361 (2017).

    Article  ADS  Google Scholar 

  26. Thurman, S. T. Method of obtaining wavefront slope data from through-focus point spread function measurements. J. Opt. Soc. Am. A 28, 1–7 (2011).

    Article  ADS  Google Scholar 

  27. Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 234–241 (Springer, 2015).

  28. Liu, G. et al. Image inpainting for irregular holes using partial convolutions. In European Conference on Computer Vision (ECCV) 2018 89–105 (Springer, 2018).

  29. Wang, K. et al. On the use of deep learning for phase recovery. Light Sci. Appl. 13, 4 (2024).

    Article  ADS  Google Scholar 

  30. Shu, X., Li, B. & Ma, Z. Wavefront reconstruction using two-frame random interferometry based on Swin-Unet. Photonics 11, 122 (2024).

  31. Schmidt, J. D. Numerical Simulation of Optical Wave Propagation: With Examples in MATLAB (SPIE, 2010).

  32. Kang, J., Fernandez-Beltran, R., Kang, X., Ni, J. & Plaza, A. Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 2551–2562 (2021).

    Article  ADS  Google Scholar 

  33. Ohtsuji, T., Takeuchi, T., Soma, T. & Kitsunezuka, M. Noise-tolerant, deep-learning-based radio identification with logarithmic power spectrum. In IEEE International Conference on Communications (ICC) 2019 1–6 (IEEE, 2019).

  34. Han, H. & Choi, S. Transfer learning from simulation to experimental data: NMR chemical shift predictions. J. Phys. Chem. Lett. 12, 3662–3668 (2021).

    Article  Google Scholar 

  35. Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018).

    Article  ADS  Google Scholar 

  36. Chen, N. & Brady, D. Ptychographic wavefront cameras. Opt. Lett. 49, 6653–6656 (2024).

    Article  ADS  Google Scholar 

  37. Wang, Q., Yu, S., Zhou, Y., Tan, L. & Ma, J. Influence of atmospheric turbulence on coherent source in a horizontal long-distance laser link. Opt. Laser Technol. 122, 105877 (2020).

    Article  Google Scholar 

  38. Wang, Y., Zhang, Y., Wang, J. & Jia, J. Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence. Opt. Laser Technol. 43, 776–780 (2011).

    Article  ADS  Google Scholar 

  39. Dean, B. H. & Bowers, C. W. Diversity selection for phase-diverse phase retrieval. J. Opt. Soc. Am. A 20, 1490–1504 (2003).

    Article  ADS  Google Scholar 

  40. Watnik, A. T. & Gardner, D. F. Wavefront sensing in deep turbulence. Opt. Photon. News 29, 38–45 (2018).

    Article  ADS  Google Scholar 

  41. Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman and Company, 2017).

Download references

Acknowledgements

This work was supported by the US Army Space and Missile Defense Command (Z.J.C., A.M.J., M.B., J.C. and N.A.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Z.J.C. Methodology: Z.J.C., J.C., A.M.J. and M.B. Investigation: A.M.J., M.B. and Z.J.C. Visualization: A.M.J., M.B. and Z.J.C. Funding acquisition: N.A. and Z.J.C. Project administration: N.A. and Z.J.C. Supervision: Z.J.C. and J.C. Writing—original draft: A.M.J., Z.J.C. and M.B. Writing—review and editing: all authors contributed to the final editing.

Corresponding author

Correspondence to Zachary J. Coppens.

Ethics declarations

Competing interests

CFD Research is working to commercialize metasurface technologies (Z.J.C., A.M.J., M.B. and J.C.). The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks David Brady, Glen Herriot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7 and Figs. 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin Jimenez, A., Baltes, M., Cornelius, J. et al. Single-shot phase diversity wavefront sensing in deep turbulence via metasurface optics. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01772-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing