Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-trivial quantum geometry and the strength of electron–phonon coupling

Abstract

Electron–phonon coupling is crucial for the existence of various phases of matter, in particular superconductivity and density waves. Here, we devise a theory that incorporates the quantum geometry of the electron bands into the electron–phonon coupling, demonstrating the crucial contributions of the Fubini–Study metric or its orbital selective version to the dimensionless electron–phonon coupling constant. We apply the theory to two materials, that is, graphene and MgB2, where the geometric contributions account for approximately 50% and 90% of the total electron–phonon coupling constant, respectively. The quantum geometric contributions in the two systems are further bounded from below by topological contributions. Our results suggest that the non-trivial electron band geometry or topology might favour superconductivity with a relatively high critical temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum geometry and EPC.
Fig. 2: Plots for graphene.
Fig. 3: Plots for MgB2.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the authors on reasonable request. Source data are provided with this paper.

Code availability

The code generated during and/or analysed for the current study is available from the authors on reasonable request.

References

  1. Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. Resta, R. The insulating state of matter: a geometrical theory. Eur. Phys. J. B 79, 121 (2011).

    Article  ADS  Google Scholar 

  3. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  Google Scholar 

  4. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  5. Mielke, A. Ferromagnetism in the Hubbard model on line graphs and further considerations. J. Phys. A 24, 3311 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  6. Călugăru, D. et al. General construction and topological classification of crystalline flat bands. Nat. Phys. 18, 185–189 (2022).

    Article  Google Scholar 

  7. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article  ADS  Google Scholar 

  8. Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

  9. Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    Article  ADS  Google Scholar 

  10. Neupert, T., Chamon, C. & Mudry, C. Measuring the quantum geometry of bloch bands with current noise. Phys. Rev. B 87, 245103 (2013).

    Article  ADS  Google Scholar 

  11. Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    Article  ADS  Google Scholar 

  12. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  ADS  Google Scholar 

  13. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  Google Scholar 

  14. Liang, L. et al. Band geometry, Berry curvature, and superfluid weight. Phys. Rev. B 95, 024515 (2017).

    Article  ADS  Google Scholar 

  15. Ozawa, T. & Goldman, N. Extracting the quantum metric tensor through periodic driving. Phys. Rev. B 97, 201117 (2018).

    Article  ADS  Google Scholar 

  16. Li, Y. & Haldane, F. D. M. Topological nodal Cooper pairing in doped Weyl metals. Phys. Rev. Lett. 120, 067003 (2018).

    Article  ADS  Google Scholar 

  17. Gao, Y. & Xiao, D. Nonreciprocal directional dichroism induced by the quantum metric dipole. Phys. Rev. Lett. 122, 227402 (2019).

    Article  ADS  Google Scholar 

  18. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article  ADS  Google Scholar 

  19. Rhim, J.-W., Kim, K. & Yang, B.-J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).

    Article  ADS  Google Scholar 

  20. Kozii, V., Avdoshkin, A., Zhong, S. & Moore, J. E. Intrinsic anomalous Hall conductivity in a nonuniform electric field. Phys. Rev. Lett. 126, 156602 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  21. Chen, W. & Huang, W. Quantum-geometry-induced intrinsic optical anomaly in multiorbital superconductors. Phys. Rev. Res. 3, L042018 (2021).

    Article  Google Scholar 

  22. Ahn, J., Guo, G.-Y., Nagaosa, N. & Vishwanath, A. Riemannian geometry of resonant optical responses. Nat. Phys. 18, 290–295 (2022).

    Article  Google Scholar 

  23. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  24. Migdal, A. Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 7, 996 (1958).

    Google Scholar 

  25. Eliashberg, G. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696 (1960).

    MathSciNet  Google Scholar 

  26. McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  27. Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975).

    Article  ADS  Google Scholar 

  28. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Article  ADS  Google Scholar 

  29. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    Article  ADS  Google Scholar 

  30. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    Article  ADS  Google Scholar 

  31. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Article  ADS  Google Scholar 

  32. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  ADS  Google Scholar 

  33. Bud’ko, S. L. et al. Boron isotope effect in superconducting mgb2. Phys. Rev. Lett. 86, 1877 (2001).

    Article  ADS  Google Scholar 

  34. Hinks, D. G., Claus, H. & Jorgensen, J. D. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect. Nature 411, 457–460 (2001).

    Article  ADS  Google Scholar 

  35. Esterlis, I. et al. Breakdown of the Migdal–Eliashberg theory: a determinant quantum Monte Carlo study. Phys. Rev. B 97, 140501 (2018).

    Article  ADS  Google Scholar 

  36. Sous, J., Chakraborty, M., Krems, R. V. & Berciu, M. Light bipolarons stabilized by peierls electron–phonon coupling. Phys. Rev. Lett. 121, 247001 (2018).

    Article  ADS  Google Scholar 

  37. Mitra, T. Electron–phonon interaction in the modified tight-binding approximation. J. Phys. C 2, 52 (1969).

    Article  ADS  Google Scholar 

  38. Törmä, P., Liang, L. & Peotta, S. Quantum metric and effective mass of a two-body bound state in a flat band. Phys. Rev. B 98, 220511 (2018).

    Article  ADS  Google Scholar 

  39. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  40. Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    Article  ADS  Google Scholar 

  41. Bernevig, B. A., Song, Z.-D., Regnault, N. & Lian, B. Twisted bilayer graphene. III. Interacting Hamiltonian and exact symmetries. Phys. Rev. B 103, 205413 (2021).

    Article  ADS  Google Scholar 

  42. Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  43. Liu, C.-X., Chen, Y., Yazdani, A. & Bernevig B. A. Electron–K-phonon interaction in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2303.15551 (2023).

  44. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  45. Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656 (2001).

    Article  ADS  Google Scholar 

  46. An, J. M. & Pickett, W. E. Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett. 86, 4366 (2001).

    Article  ADS  Google Scholar 

  47. Kong, Y., Dolgov, O. V., Jepsen, O. & Andersen, O. K. Electron–phonon interaction in the normal and superconducting states of MgB2. Phys. Rev. B 64, 020501 (2001).

    Article  ADS  Google Scholar 

  48. Shukla, A. et al. Phonon dispersion and lifetimes in MgB2. Phys. Rev. Lett. 90, 095506 (2003).

    Article  ADS  Google Scholar 

  49. Jin, K.-H. et al. Topological superconducting phase in high-Tc superconductor MgB2 with Dirac–nodal-line fermions. npj Comput. Mater. 5, 57 (2019).

    Article  ADS  Google Scholar 

  50. Aroyo, M. I. et al. Bilbao crystallographic server: I. databases and crystallographic computing programs. Z. Kristallogr. Cryst. Mater. 221, 15 (2006).

    Article  Google Scholar 

  51. Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen–Ninomiya theorem and fragile topology in two-dimensional systems with space–time inversion symmetry: application to twisted bilayer graphene at magic angle. Phys. Rev. X 9, 021013 (2019).

    Google Scholar 

  52. Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article  ADS  Google Scholar 

  53. Maultzsch, J., Reich, S., Thomsen, C., Requardt, H. & Ordejón, P. Phonon dispersion in graphite. Phys. Rev. Lett. 92, 075501 (2004).

    Article  ADS  Google Scholar 

  54. Zhu, X. et al. Electron–phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements. Phys. Rev. Lett. 108, 185501 (2012).

    Article  ADS  Google Scholar 

  55. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337 (2000).

    Article  ADS  Google Scholar 

  56. Chen, Y. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009).

    Article  ADS  Google Scholar 

  57. Hatch, R. C. et al. Stability of the Bi2Se3(111) topological state: electron–phonon and electron–defect scattering. Phys. Rev. B 83, 241303 (2011).

    Article  ADS  Google Scholar 

  58. Wang, Y., Plackowski, T. & Junod, A. Specific heat in the superconducting and normal state (2–300 K, 0–16 T), and magnetic susceptibility of the 38 K superconductor MgB2: evidence for a multicomponent gap. Physica C 355, 179 (2001).

    Article  ADS  Google Scholar 

  59. Korshunovet, A. et al. Softening of a flat phonon mode in the kagome ScV6Sn6. Nat. Commun. 14, 6646 (2023).

Download references

Acknowledgements

We acknowledge E. Baldini, D. Calugaru, M. Cheng, S. Das Sarma, L. Glazman, F. D. M. Haldane, J. Herzog-Arbeitman, H. Hu, L.-H. Hu, Y. H. Kwan, B. Lian, C. -Hwan Park, Z.-D. Song, I. Souza, J. Sous, X.-Q. Sun, P. Törmä, Y. Xu, R.-X. Zhang and especially C.-X. Liu for helpful discussion. B.A.B.’s research was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101020833) and partially by the Simons Investigator grant no. 404513, the Gordon and Betty Moore Foundation through grant no. GBMF8685 towards the Princeton theory programme, the Gordon and Betty Moore Foundation’s EPiQS Initiative (grant no. GBMF11070), the Office of Naval Research (grant no. N00014-20-1-2303), the Global Collaborative Network Grant at Princeton University, the BSF Israel–US Foundation (no. 2018226) and the NSF-MERSEC (grant no. MERSEC DMR 2011750). J.Y. is supported by the Gordon and Betty Moore Foundation through grant no. GBMF8685 toward the Princeton theory programme. I.E. and B.A.B. are part of the SuperC collaboration. I.E. has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 802533) and the Department of Education, Universities and Research of the Eusko Jaurlaritza and the University of the Basque Country UPV/EHU (grant no. IT1527-22). Calculations by C.J.C. and P.N. were supported by Office of Naval Research grant no. 13672292 and by Gordon and Betty Moore Foundation grant no. 8048. P.N. gratefully acknowledges support from the Alexander von Humboldt Foundation (Bessel Research Award) and from the John Simon Guggenheim Memorial Foundation (Guggenheim Fellowship).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and B.A.B. conceived and supervised the project. J.Y. and B.A.B. performed the theoretical analysis. C.J.C., R.B., I.E. and P.N. performed the ab initio calculations. J.Y. and B.A.B. wrote the paper, with input from C.J.C., R.B., I.E. and P.N.

Corresponding author

Correspondence to B. Andrei Bernevig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Tables I and II.

Source data

Source Data Fig. 2

Data obtained from numerical calculations for Fig. 2.

Source Data Fig. 3

Data obtained from numerical calculations for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Ciccarino, C.J., Bianco, R. et al. Non-trivial quantum geometry and the strength of electron–phonon coupling. Nat. Phys. 20, 1262–1268 (2024). https://doi.org/10.1038/s41567-024-02486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02486-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing