Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental quantum computational chemistry with optimized unitary coupled cluster ansatz

Abstract

Quantum computational chemistry has emerged as a potential application of quantum computing. Hybrid quantum-classical computing methods, such as variational quantum eigensolvers, have been designed as promising solutions to quantum chemistry problems. Nonetheless, challenges due to theoretical complexity and experimental imperfections hinder progress in achieving reliable and accurate results. Experimental works for solving electronic structures are consequently still restricted to non-scalable or classically simulable ansatz or limited to a few qubits with large errors. Here, we address the critical challenges associated with solving molecular electronic structures using noisy quantum processors. Our protocol presents improvements in the circuit depth and running time, key metrics for chemistry simulation. Through systematic hardware enhancements and the integration of error-mitigation techniques, we overcome theoretical and experimental limitations and successfully scale up the implementation of variational quantum eigensolvers with an optimized unitary coupled cluster ansatz to 12 qubits. We produce high-precision results of the ground-state energy for molecules with error suppression by around two orders of magnitude. Our work demonstrates a feasible path towards a scalable solution to electronic structure calculation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A diagrammatic scheme for the VQE on a superconducting quantum processor showing device, quantum circuit, measurement and error mitigation.
Fig. 2: Experimental optimization and implementation of the algorithm.
Fig. 3: VQE simulations for potential energy curves for different molecules.
Fig. 4: Resource estimation and error analysis with increasing system size.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code for this paper is available from the corresponding authors upon reasonable request.

References

  1. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  ADS  Google Scholar 

  2. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

    Article  Google Scholar 

  3. Argüello-Luengo, J., González-Tudela, A., Shi, T., Zoller, P. & Cirac, J. I. Analogue quantum chemistry simulation. Nature 574, 215–218 (2019).

    Article  ADS  Google Scholar 

  4. Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    Article  ADS  Google Scholar 

  5. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article  Google Scholar 

  6. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  7. Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).

    Article  Google Scholar 

  8. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  9. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article  Google Scholar 

  10. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  11. Dalton, K. et al. Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry. npj Quantum Inf. 10, 18 (2024).

  12. Bittel, L. & Kliesch, M. Training variational quantum algorithms is np-hard. Phys. Rev. Lett. 127, 120502 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  13. Gonthier, J. F. et al. Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis. Phys. Rev. Res. 4, 033154 (2022).

    Article  Google Scholar 

  14. Yen, T.-C., Ganeshram, A. & Izmaylov, A. F. Deterministic improvements of quantum measurements with grouping of compatible operators, non-local transformations, and covariance estimates. npj Quantum Inf. 9, 14 (2023).

    Article  ADS  Google Scholar 

  15. Stilck França, D. & Garcia-Patron, R. Limitations of optimization algorithms on noisy quantum devices. Nat. Phys. 17, 1221–1227 (2021).

    Article  Google Scholar 

  16. Wang, S. et al. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021).

    Article  ADS  Google Scholar 

  17. O’Malley, P. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  18. Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018).

    Google Scholar 

  19. Colless, J. I. et al. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X 8, 011021 (2018).

    Google Scholar 

  20. Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

    Article  ADS  Google Scholar 

  21. Shen, Y. et al. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A 95, 020501 (2017).

    Article  ADS  Google Scholar 

  22. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  ADS  Google Scholar 

  23. Arute, F. et al. Hartree-Fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020).

    Article  MathSciNet  Google Scholar 

  24. Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article  ADS  Google Scholar 

  25. Quek, Y., França, D. S., Khatri, S., Meyer, J. J. & Eisert, J. Exponentially tighter bounds on limitations of quantum error mitigation. Preprint at https://arXiv.org/2210.11505 (2022).

  26. Romero, J. et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. Technol. 4, 014008 (2018).

    Article  ADS  Google Scholar 

  27. Anand, A. et al. A quantum computing view on unitary coupled cluster theory. Chem. Soc. Rev. 51, 1659–1684 (2022).

    Article  Google Scholar 

  28. Bartlett, R. J., Kucharski, S. A. & Noga, J. Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chem. Phys. Lett. 155, 133–140 (1989).

    Article  ADS  Google Scholar 

  29. Bravyi, S., Sheldon, S., Kandala, A., Mckay, D. C. & Gambetta, J. M. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A 103, 042605 (2021).

    Article  ADS  Google Scholar 

  30. Czarnik, P., Arrasmith, A., Coles, P. J. & Cincio, L. Error mitigation with clifford quantum-circuit data. Quantum 5, 592 (2021).

    Article  Google Scholar 

  31. Lowe, A. et al. Unified approach to data-driven quantum error mitigation. Phys. Rev. Res. 3, 033098 (2021).

    Article  Google Scholar 

  32. Cioslowski, J. Connected moments expansion: a new tool for quantum many-body theory. Phys. Rev. Lett. 58, 83–85 (1987).

    Article  ADS  Google Scholar 

  33. Claudino, D., Peng, B., Bauman, N. P., Kowalski, K. & Humble, T. S. Improving the accuracy and efficiency of quantum connected moments expansions. Quantum Sci. Technol. 6, 034012 (2021).

    Article  ADS  Google Scholar 

  34. Stanton, J. F., Gauss, J., Watts, J. D. & Bartlett, R. J. A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations. J. Chem. Phys. 94, 4334–4345 (1991).

    Article  ADS  Google Scholar 

  35. Cao, C. et al. Progress toward larger molecular simulation on a quantum computer: simulating a system with up to 28 qubits accelerated by point-group symmetry. Phys. Rev. A 105, 062452 (2022).

    Article  ADS  Google Scholar 

  36. Fan, Y. et al. Circuit-depth reduction of unitary-coupled-cluster ansatz by energy sorting. J. Phys. Chem. Lett. 14, 9596–9603 (2023).

    Article  Google Scholar 

  37. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J. & Killoran, N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331 (2019).

    Article  ADS  Google Scholar 

  38. Wecker, D., Hastings, M. B. & Troyer, M. Progress towards practical quantum variational algorithms. Phys. Rev. A 92, 042303 (2015).

    Article  ADS  Google Scholar 

  39. Wu, B., Sun, J., Huang, Q. & Yuan, X. Overlapped grouping measurement: a unified framework for measuring quantum states. Quantum 7, 896 (2023).

    Article  Google Scholar 

  40. Huang, H.-Y., Kueng, R. & Preskill, J. Efficient estimation of pauli observables by derandomization. Phys. Rev. Lett. 127, 030503 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  41. Gustavsson, S. et al. Dynamical decoupling and dephasing in interacting two-level systems. Phys. Rev. Lett. 109, 010502 (2012).

    Article  ADS  Google Scholar 

  42. Bonet-Monroig, X., Sagastizabal, R., Singh, M. & O’Brien, T. E. Low-cost error mitigation by symmetry verification. Phys. Rev. A 98, 062339 (2018).

    Article  ADS  Google Scholar 

  43. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article  ADS  Google Scholar 

  44. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  45. Tilly, J. et al. The variational quantum eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  46. Sun, Q. et al. Pyscf: the Python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1340 (2018).

    Article  Google Scholar 

  47. Rubin, N. C. et al. The fermionic quantum emulator. Quantum 5, 568 (2021).

    Article  Google Scholar 

  48. Hadfield, C., Bravyi, S., Raymond, R. & Mezzacapo, A. Measurements of quantum Hamiltonians with locally-biased classical shadows. Commun. Math. Phys. 391, 951–967 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  49. O’Brien, T. E. et al. Purification-based quantum error mitigation of pair-correlated electron simulations. Nat. Phys. 19, 1787–1792 (2023).

  50. Zhao, L. et al. Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers. npj Quantum Inf. 9, 60 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Li, V. Vedral, M.S. Kim, H. Shen, C. Cao, D. Lv and J. Liu for useful related discussions on the theoretical scheme. We thank the USTC Center for Micro- and Nanoscale Research and Fabrication for supporting the sample fabrication. We also thank QuantumCTek Co., Ltd. for supporting the fabrication and maintenance of room-temperature electronics. This research was supported by the Innovation Programme for Quantum Science and Technology (grant nos. 2021ZD0300200, 2023ZD0300200), Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01), Anhui Initiative in Quantum Information Technologies, National Natural Science Foundation of China (grant nos. 12175003 and 12361161602), NSAF (grant no. U2330201), Natural Science Foundation of Shandong Province, China (grant no. ZR202209080019), the Key-Area Research and Development Programme of Guangdong Province (grant no. 2020B0303060001) and special funds from Jinan Science and Technology Bureau and Jinan High Tech Zone Management Committee. H.-L.H. acknowledges support from the Youth Talent Lifting Project (grant no. 2020-JCJQ-QT-030), National Natural Science Foundation of China (grant nos. 11905294, 12274464), China Postdoctoral Science Foundation and the Open Research Fund from State Key Laboratory of High Performance Computing of China (grant no. 201901-01). J.S. acknowledges the Samsung GRC grant for financial support. M.G. was supported by the National Science Foundation of China (grant no. T2322024), Shanghai Rising-Star Programme (grant no. 23QA1410000) and the Youth Innovation Promotion Association of CAS (grant no. 2022460). X.Z. acknowledges support from THE XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

X.Y, M.G and J.S. initiated the project. J.S. developed the theoretical aspect of the project and built up the source code for numerical simulation with input from X.Y. and Y. Zhang. J.S., Y. Zhang and K.L. carried out the numerical simulation under the supervision of X.Y., Y. Zhang and K.L. generated the measurement bases with the algorithm developed by J.S. S.G., H.Q., M.G., F.C. and S.C. performed the measurements. S.G., J.S., H.Q., M.G. and Y. Zhao analysed the experimental data. Q.Z., Y.Y., C.Y., F.C. and S.L. designed the processor. S.C., Y.L., K.Z., S.G., H.Q., T.-H.C., H.R., H.D. and Y.-H.H. fabricated the processor. M.G., S.W., C.Z., Y. Zhao, S.L., C.Y., J.Y., D.F., D.W. and H.S. contributed to the construction of the ultracold and low-noise measurement system. J.L., Y.X., F.L., C.G., L.S., N.L. and C.-Z.P. developed the room-temperature electronics. Experiments were performed using a quantum processor that was developed and fabricated with a large effort from the experimental team. J.S., S.G., Y.Z., X.Y. and M.G. wrote the paper with input from all authors. X.Y., X.Z. and J.-W.P. supervised the project.

Corresponding authors

Correspondence to Xiao Yuan, Xiaobo Zhu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Christian Andersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Benchmark of multi-qubit Pauli rotation gate.

The comparison of the operation quality before and after optimization with qubit number being four (a), six (b), eight (c) and ten (d). The error rate of each sequence, as a characteristic of the averaged fidelity, can be obtained by measuring the probability of \({\left\vert 0\right\rangle }^{\otimes n}\). The data points are the average values at each sequence length.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, discussion and Table I.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Sun, J., Qian, H. et al. Experimental quantum computational chemistry with optimized unitary coupled cluster ansatz. Nat. Phys. 20, 1240–1246 (2024). https://doi.org/10.1038/s41567-024-02530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02530-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing