Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incommensurability enabled quasi-fractal order in 1D narrow-band moiré systems

An Author Correction to this article was published on 17 February 2025

This article has been updated

Abstract

A moiré potential—the superposition of two periodic potentials with different wavelengths—will either introduce a new periodicity into a system if the two potentials are commensurate or force the system to be quasiperiodic if they are not. Here we demonstrate that quasiperiodicity can change the ground-state properties of one-dimensional moiré systems with respect to their periodic counterparts. We show that although narrow bands play a role in enhancing interactions, for both commensurate and incommensurate structures, only quasiperiodicity is able to extend the ordered phase down to an infinitesimal interaction strength. In this regime, the state enabled by quasiperiodicity has contributions from electronic states with a very large number of wavevectors. This quasi-fractal regime cannot be stabilized in the commensurate case even in the presence of a narrow band. These findings suggest that quasiperiodicity may be a critical factor in stabilizing non-trivial ordered phases in interacting moiré structures and highlight that multifractal non-interacting phases might be particularly promising parent states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagrams for IS and CS.
Fig. 2: LL-CDW transition.
Fig. 3: Momentum-space charge fluctuations for V2 < 1.
Fig. 4: Momentum-space charge fluctuations for V2 > 1.

Similar content being viewed by others

Data availability

All data presented in the figures are available via Zenodo at https://doi.org/10.5281/zenodo.8082294 (ref. 60). Source data are provided with this paper.

Code availability

The code used in this work is available via GitHub at https://github.com/gmiguel17/Phd_codes/tree/main/Incommensurability_enabled_quasi-fractal_order_in_1D_narrow-band_moire_systems.

Change history

References

  1. Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 18 (1980).

  2. Roati, G. et al. Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–898 (2008).

    ADS  MATH  Google Scholar 

  3. Lahini, Y et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

  4. Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  5. Lüschen, H. P. et al. Single-particle mobility edge in a one-dimensional quasiperiodic optical lattice. Phys. Rev. Lett. 120, 160404 (2018).

  6. Pixley, J. H., Wilson, J. H., Huse, D. A. & Gopalakrishnan, S. Weyl semimetal to metal phase transitions driven by quasiperiodic potentials. Phys. Rev. Lett. 120, 207604 (2018).

    ADS  Google Scholar 

  7. Park, MoonJip, Kim, HeeSeung & Lee, S. Emergent localization in dodecagonal bilayer quasicrystals. Phys. Rev. B 99, 245401 (2019).

    ADS  MATH  Google Scholar 

  8. Huang, B. & Liu, W. V. Moiré localization in two-dimensional quasiperiodic systems. Phys. Rev. B 100, 144202 (2019).

    ADS  MATH  Google Scholar 

  9. Fu, Y., König, E. J., Wilson, J. H., Chou, Yang-Zhi & Pixley, J. H. Magic-angle semimetals. npj Quantum Mater. 5, 71 (2020).

    ADS  MATH  Google Scholar 

  10. Gonçalves, M. et al. Incommensurability-induced sub-ballistic narrow-band-states in twisted bilayer graphene. 2D Mater. 9, 011001 (2021).

    MATH  Google Scholar 

  11. Bordia, P. et al. Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys. Rev. X 7, 041047 (2017).

    Google Scholar 

  12. Yao, H., Khoudli, H., Bresque, L. éa & Sanchez-Palencia, L. Critical behavior and fractality in shallow one-dimensional quasiperiodic potentials. Phys. Rev. Lett. 123, 070405 (2019).

    ADS  Google Scholar 

  13. Gautier, R., Yao, H. & Sanchez-Palencia, L. Strongly interacting bosons in a two-dimensional quasicrystal lattice. Phys. Rev. Lett. 126, 110401 (2021).

    ADS  MATH  Google Scholar 

  14. Borgnia, D. S., Vishwanath, A. & Slager, R.-J. Rational approximations of quasiperiodicity via projected Green’s functions. Phys. Rev. B 106, 054204 (2022).

    ADS  Google Scholar 

  15. Liu, F., Ghosh, S. & Chong, Y. D. Localization and adiabatic pumping in a generalized Aubry-André-Harper model. Phys. Rev. B 91, 014108 (2015).

    ADS  Google Scholar 

  16. ČadeŽ, T., Mondaini, R. & Sacramento, P. D. Edge and bulk localization of Floquet topological superconductors. Phys. Rev. B 99, 014301 (2019).

  17. Wang, Y., Zhang, L., Niu, S., Yu, D. & Liu, X.-J. Realization and detection of nonergodic critical phases in an optical Raman lattice. Phys. Rev. Lett. 125, 073204 (2020).

    ADS  MATH  Google Scholar 

  18. Liu, T., Xia, X., Longhi, S. & Sanchez-Palencia, L. Anomalous mobility edges in one-dimensional quasiperiodic models. SciPost Phys. 12, 27 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  19. Gonçalves, M., Amorim, B., Castro, E. V. & Ribeiro, P. Renormalization group theory of one-dimensional quasiperiodic lattice models with commensurate approximants. Phys. Rev. B 108, L100201 (2023).

    ADS  MATH  Google Scholar 

  20. Gonçalves, M., Amorim, B., Castro, E. V. & Ribeiro, P. Critical phase dualities in 1D exactly solvable quasiperiodic models. Phys. Rev. Lett. 131, 186303 (2023).

    ADS  MathSciNet  MATH  Google Scholar 

  21. Kraus, Y. E. & Zilberberg, O. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012).

    ADS  MATH  Google Scholar 

  22. Zilberberg, O. Topology in quasicrystals. Opt. Mater. Express 11, 1143–1157 (2021).

    ADS  MATH  Google Scholar 

  23. Lado, J. L. & Zilberberg, O. Topological spin excitations in Harper-Heisenberg spin chains. Phys. Rev. Res. 1, 033009 (2019).

    MATH  Google Scholar 

  24. Boers, D. J., Goedeke, B., Hinrichs, D. & Holthaus, M. Mobility edges in bichromatic optical lattices. Phys. Rev. A 75, 63404 (2007).

    ADS  Google Scholar 

  25. Yao, H., Giamarchi, T. & Sanchez-Palencia, L. Lieb-Liniger bosons in a shallow quasiperiodic potential: Bose glass phase and fractal Mott lobes. Phys. Rev. Lett. 125, 060401 (2020).

    ADS  MATH  Google Scholar 

  26. An, F. A. et al. Interactions and mobility edges: observing the generalized Aubry-André model. Phys. Rev. Lett. 126, 040603 (2021).

    ADS  Google Scholar 

  27. Kohlert, T. et al. Observation of many-body localization in a one-dimensional system with a single-particle mobility edge. Phys. Rev. Lett. 122, 170403 (2019).

    ADS  MATH  Google Scholar 

  28. Sinelnik, A. D. et al. Experimental observation of intrinsic light localization in photonic icosahedral quasicrystals. Adv. Opt. Mater. 8, 2001170 (2020).

    Google Scholar 

  29. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    MATH  Google Scholar 

  30. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    ADS  MATH  Google Scholar 

  31. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    ADS  MATH  Google Scholar 

  32. Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  33. Szabó, A. & Schneider, U. Mixed spectra and partially extended states in a two-dimensional quasiperiodic model. Phys. Rev. B 101, 014205 (2020).

  34. Gonçalves, T. S., Gonçalves, M., Ribeiro, P. & Amorim, B. Topological phase transitions for any taste in 2D quasiperiodic systems. Preprint at https://arxiv.org/abs/2212.08024 (2022).

  35. Zhou, X.-C., Wang, Y., Poon, T.-F. J., Zhou, Q. & Liu, X.-J. Exact new mobility edges between critical and localized states. Phys. Rev. Lett. 131, 176401 (2023).

    ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, T. & Xia, X. Predicted critical state based on invariance of the Lyapunov exponent in dual spaces. Chin. Phys. Lett. 41, 017102 (2024).

    ADS  MATH  Google Scholar 

  37. Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).

    ADS  Google Scholar 

  38. Mondaini, R. & Rigol, M. Many-body localization and thermalization in disordered Hubbard chains. Phys. Rev. A 92, 041601 (2015).

    ADS  MATH  Google Scholar 

  39. Žnidarič, M. & Ljubotina, M. Interaction instability of localization in quasiperiodic systems. Proc. Natl Acad. Sci. USA 115, 4595–4600 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  40. Xu, S., Li, X., Hsu, Y.-T., Swingle, B. & Das Sarma, S. Butterfly effect in interacting Aubry-Andre model: thermalization, slow scrambling, and many-body localization. Phys. Rev. Res. 1, 032039 (2019).

    Google Scholar 

  41. V. H. Doggen, E. & Mirlin, A. D. Many-body delocalization dynamics in long Aubry-André quasiperiodic chains. Phys. Rev. B 100, 104203 (2019).

    ADS  MATH  Google Scholar 

  42. Vu, D. D., Huang, K., Li, X. & Das Sarma, S. Fermionic many-body localization for random and quasiperiodic systems in the presence of short- and long-range interactions. Phys. Rev. Lett. 128, 146601 (2022).

    ADS  Google Scholar 

  43. Aramthottil, A. S., Chanda, T., Sierant, P. & Zakrzewski, J. Finite-size scaling analysis of the many-body localization transition in quasiperiodic spin chains. Phys. Rev. B 104, 214201 (2021).

    ADS  MATH  Google Scholar 

  44. Wang, Y., Cheng, C., Liu, X.-J. & Yu, D. Many-body critical phase: extended and nonthermal. Phys. Rev. Lett. 126, 080602 (2021).

    ADS  Google Scholar 

  45. Kraus, Y. E., Zilberberg, O. & Berkovits, R. Enhanced compressibility due to repulsive interaction in the Harper model. Phys. Rev. B 89, 161106 (2014).

    ADS  MATH  Google Scholar 

  46. Naldesi, P., Ercolessi, E. & Roscilde, T. Detecting a many-body mobility edge with quantum quenches. SciPost Phys. 1, 010 (2016).

    ADS  MATH  Google Scholar 

  47. Cookmeyer, T., Motruk, J. & Moore, J. E. Critical properties of the ground-state localization-delocalization transition in the many-particle Aubry-André model. Phys. Rev. B 101, 174203 (2020).

    ADS  MATH  Google Scholar 

  48. Vu, D. D. & Das Sarma, S. Moiré versus Mott: incommensuration and interaction in one-dimensional bichromatic lattices. Phys. Rev. Lett. 126, 036803 (2021).

    ADS  Google Scholar 

  49. Oliveira, R., Gonçalves, M., Ribeiro, P., Castro, E. V. & Amorim, B. Incommensurability-induced enhancement of superconductivity in one dimensional critical systems. Preprint at https://arxiv.org/abs/2303.17656 (2023).

  50. Gonçalves, M., Pixley, J. H., Amorim, B., Castro, E. V. & Ribeiro, P. Short-range interactions are irrelevant at the quasiperiodicity-driven Luttinger liquid to Anderson glass transition. Phys. Rev. B 109, 014211 (2024).

    ADS  Google Scholar 

  51. Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    ADS  MATH  Google Scholar 

  52. Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).

    ADS  MATH  Google Scholar 

  53. Mishra, T., Carrasquilla, J. & Rigol, M. Phase diagram of the half-filled one-dimensional t-v-\({V}^{{\prime} }\) model. Phys. Rev. B 84, 115135 (2011).

    ADS  Google Scholar 

  54. Gu, S.-J. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371–4458 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  55. Sun, G., Kolezhuk, A. K. & Vekua, T. Fidelity at Berezinskii-Kosterlitz-Thouless quantum phase transitions. Phys. Rev. B 91, 014418 (2015).

    ADS  Google Scholar 

  56. DeGottardi, W., Sen, D. & Vishveshwara, S. Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett. 110, 146404 (2013).

    ADS  MATH  Google Scholar 

  57. Chou, Y.-Z., Fu, Y., Wilson, J. H., König, E. J. & Pixley, J. H. Magic-angle semimetals with chiral symmetry. Phys. Rev. B 101(23), 235121 (2020).

    ADS  Google Scholar 

  58. Fishman, M., White, S. R. & Stoudenmire, E. M. Codebase release 0.3 for ITensor. SciPost Phys. Codebases https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3 (2022).

  59. Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software library for tensor network calculations. SciPost Phys. Codebases https://doi.org/10.21468/SciPostPhysCodeb.4 (2022).

  60. Gonçalves, M. et al. Data of figures in arXiv:2305.03800. Zenodo https://doi.org/10.5281/zenodo.8082294 (2023).

Download references

Acknowledgements

M.G. and P.R. acknowledge partial support from Fundação para a Ciência e Tecnologia (FCT-Portugal; Grant No. UID/CTM/04540/2019 and to the Research Unit UID/04540: CeFEMA financed by FCT-Portugal). B.A. and E.V.C. acknowledge partial support from FCT-Portugal (Grant No. UID/04650 - Centro de Física das Universidades do Minho e do Porto). M.G. acknowledges further support from FCT-Portugal (Grant No. SFRH/BD/145152/2019). B.A. acknowledges further support from FCT-Portugal (Grant No. CEECIND/02936/2017). We also acknowledge the Tianhe-2JK cluster at the Beijing Computational Science Research Center, the BobMacc supercomputer (Computational Project CPCA/A1/470243/2021) and the OBLIVION supercomputer (Projects HPCUE/A1/468700/2021, 2022.15834.CPCA.A1 and 2022.15910.CPCA.A1). The OBLIVION supercomputer is at the High Performance Computing Center, University of Évora, and is funded by the ENGAGE SKA Research Infrastructure (Reference POCI-01-0145-FEDER-022217 - COMPETE 2020), the Foundation for Science and Technology, Portugal, the BigData@UE project (Reference ALT20-03-0246-FEDER-000033 - FEDER) and the Alentejo 2020 Regional Operational Program. Computer assistance was provided by the Computational Science Research Center, BobMacc and OBLIVION support teams.

Author information

Authors and Affiliations

Authors

Contributions

M.G., F.R., B.A., E.V.C. and P.R. planned and defined the project, analysed and interpreted the results, and wrote the paper. M.G. performed the numerical calculations.

Corresponding author

Correspondence to Miguel Gonçalves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Sriram Ganeshan, Xiong-Jun Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7 and Figs. 1–17.

Source data

Source Data Fig. 1

Contains all the source data for Fig. 1, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.

Source Data Fig. 2

Contains all the source data for Fig. 2, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.

Source Data Fig. 3

Contains all the source data for Fig. 3, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.

Source Data Fig. 4

Contains all the source data for Fig. 4, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, M., Amorim, B., Riche, F. et al. Incommensurability enabled quasi-fractal order in 1D narrow-band moiré systems. Nat. Phys. 20, 1933–1940 (2024). https://doi.org/10.1038/s41567-024-02662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02662-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing