Abstract
A moiré potential—the superposition of two periodic potentials with different wavelengths—will either introduce a new periodicity into a system if the two potentials are commensurate or force the system to be quasiperiodic if they are not. Here we demonstrate that quasiperiodicity can change the ground-state properties of one-dimensional moiré systems with respect to their periodic counterparts. We show that although narrow bands play a role in enhancing interactions, for both commensurate and incommensurate structures, only quasiperiodicity is able to extend the ordered phase down to an infinitesimal interaction strength. In this regime, the state enabled by quasiperiodicity has contributions from electronic states with a very large number of wavevectors. This quasi-fractal regime cannot be stabilized in the commensurate case even in the presence of a narrow band. These findings suggest that quasiperiodicity may be a critical factor in stabilizing non-trivial ordered phases in interacting moiré structures and highlight that multifractal non-interacting phases might be particularly promising parent states.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All data presented in the figures are available via Zenodo at https://doi.org/10.5281/zenodo.8082294 (ref. 60). Source data are provided with this paper.
Code availability
The code used in this work is available via GitHub at https://github.com/gmiguel17/Phd_codes/tree/main/Incommensurability_enabled_quasi-fractal_order_in_1D_narrow-band_moire_systems.
Change history
17 February 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41567-025-02824-w
References
Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 18 (1980).
Roati, G. et al. Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–898 (2008).
Lahini, Y et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).
Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).
Lüschen, H. P. et al. Single-particle mobility edge in a one-dimensional quasiperiodic optical lattice. Phys. Rev. Lett. 120, 160404 (2018).
Pixley, J. H., Wilson, J. H., Huse, D. A. & Gopalakrishnan, S. Weyl semimetal to metal phase transitions driven by quasiperiodic potentials. Phys. Rev. Lett. 120, 207604 (2018).
Park, MoonJip, Kim, HeeSeung & Lee, S. Emergent localization in dodecagonal bilayer quasicrystals. Phys. Rev. B 99, 245401 (2019).
Huang, B. & Liu, W. V. Moiré localization in two-dimensional quasiperiodic systems. Phys. Rev. B 100, 144202 (2019).
Fu, Y., König, E. J., Wilson, J. H., Chou, Yang-Zhi & Pixley, J. H. Magic-angle semimetals. npj Quantum Mater. 5, 71 (2020).
Gonçalves, M. et al. Incommensurability-induced sub-ballistic narrow-band-states in twisted bilayer graphene. 2D Mater. 9, 011001 (2021).
Bordia, P. et al. Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys. Rev. X 7, 041047 (2017).
Yao, H., Khoudli, H., Bresque, L. éa & Sanchez-Palencia, L. Critical behavior and fractality in shallow one-dimensional quasiperiodic potentials. Phys. Rev. Lett. 123, 070405 (2019).
Gautier, R., Yao, H. & Sanchez-Palencia, L. Strongly interacting bosons in a two-dimensional quasicrystal lattice. Phys. Rev. Lett. 126, 110401 (2021).
Borgnia, D. S., Vishwanath, A. & Slager, R.-J. Rational approximations of quasiperiodicity via projected Green’s functions. Phys. Rev. B 106, 054204 (2022).
Liu, F., Ghosh, S. & Chong, Y. D. Localization and adiabatic pumping in a generalized Aubry-André-Harper model. Phys. Rev. B 91, 014108 (2015).
ČadeŽ, T., Mondaini, R. & Sacramento, P. D. Edge and bulk localization of Floquet topological superconductors. Phys. Rev. B 99, 014301 (2019).
Wang, Y., Zhang, L., Niu, S., Yu, D. & Liu, X.-J. Realization and detection of nonergodic critical phases in an optical Raman lattice. Phys. Rev. Lett. 125, 073204 (2020).
Liu, T., Xia, X., Longhi, S. & Sanchez-Palencia, L. Anomalous mobility edges in one-dimensional quasiperiodic models. SciPost Phys. 12, 27 (2022).
Gonçalves, M., Amorim, B., Castro, E. V. & Ribeiro, P. Renormalization group theory of one-dimensional quasiperiodic lattice models with commensurate approximants. Phys. Rev. B 108, L100201 (2023).
Gonçalves, M., Amorim, B., Castro, E. V. & Ribeiro, P. Critical phase dualities in 1D exactly solvable quasiperiodic models. Phys. Rev. Lett. 131, 186303 (2023).
Kraus, Y. E. & Zilberberg, O. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012).
Zilberberg, O. Topology in quasicrystals. Opt. Mater. Express 11, 1143–1157 (2021).
Lado, J. L. & Zilberberg, O. Topological spin excitations in Harper-Heisenberg spin chains. Phys. Rev. Res. 1, 033009 (2019).
Boers, D. J., Goedeke, B., Hinrichs, D. & Holthaus, M. Mobility edges in bichromatic optical lattices. Phys. Rev. A 75, 63404 (2007).
Yao, H., Giamarchi, T. & Sanchez-Palencia, L. Lieb-Liniger bosons in a shallow quasiperiodic potential: Bose glass phase and fractal Mott lobes. Phys. Rev. Lett. 125, 060401 (2020).
An, F. A. et al. Interactions and mobility edges: observing the generalized Aubry-André model. Phys. Rev. Lett. 126, 040603 (2021).
Kohlert, T. et al. Observation of many-body localization in a one-dimensional system with a single-particle mobility edge. Phys. Rev. Lett. 122, 170403 (2019).
Sinelnik, A. D. et al. Experimental observation of intrinsic light localization in photonic icosahedral quasicrystals. Adv. Opt. Mater. 8, 2001170 (2020).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).
Szabó, A. & Schneider, U. Mixed spectra and partially extended states in a two-dimensional quasiperiodic model. Phys. Rev. B 101, 014205 (2020).
Gonçalves, T. S., Gonçalves, M., Ribeiro, P. & Amorim, B. Topological phase transitions for any taste in 2D quasiperiodic systems. Preprint at https://arxiv.org/abs/2212.08024 (2022).
Zhou, X.-C., Wang, Y., Poon, T.-F. J., Zhou, Q. & Liu, X.-J. Exact new mobility edges between critical and localized states. Phys. Rev. Lett. 131, 176401 (2023).
Liu, T. & Xia, X. Predicted critical state based on invariance of the Lyapunov exponent in dual spaces. Chin. Phys. Lett. 41, 017102 (2024).
Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).
Mondaini, R. & Rigol, M. Many-body localization and thermalization in disordered Hubbard chains. Phys. Rev. A 92, 041601 (2015).
Žnidarič, M. & Ljubotina, M. Interaction instability of localization in quasiperiodic systems. Proc. Natl Acad. Sci. USA 115, 4595–4600 (2018).
Xu, S., Li, X., Hsu, Y.-T., Swingle, B. & Das Sarma, S. Butterfly effect in interacting Aubry-Andre model: thermalization, slow scrambling, and many-body localization. Phys. Rev. Res. 1, 032039 (2019).
V. H. Doggen, E. & Mirlin, A. D. Many-body delocalization dynamics in long Aubry-André quasiperiodic chains. Phys. Rev. B 100, 104203 (2019).
Vu, D. D., Huang, K., Li, X. & Das Sarma, S. Fermionic many-body localization for random and quasiperiodic systems in the presence of short- and long-range interactions. Phys. Rev. Lett. 128, 146601 (2022).
Aramthottil, A. S., Chanda, T., Sierant, P. & Zakrzewski, J. Finite-size scaling analysis of the many-body localization transition in quasiperiodic spin chains. Phys. Rev. B 104, 214201 (2021).
Wang, Y., Cheng, C., Liu, X.-J. & Yu, D. Many-body critical phase: extended and nonthermal. Phys. Rev. Lett. 126, 080602 (2021).
Kraus, Y. E., Zilberberg, O. & Berkovits, R. Enhanced compressibility due to repulsive interaction in the Harper model. Phys. Rev. B 89, 161106 (2014).
Naldesi, P., Ercolessi, E. & Roscilde, T. Detecting a many-body mobility edge with quantum quenches. SciPost Phys. 1, 010 (2016).
Cookmeyer, T., Motruk, J. & Moore, J. E. Critical properties of the ground-state localization-delocalization transition in the many-particle Aubry-André model. Phys. Rev. B 101, 174203 (2020).
Vu, D. D. & Das Sarma, S. Moiré versus Mott: incommensuration and interaction in one-dimensional bichromatic lattices. Phys. Rev. Lett. 126, 036803 (2021).
Oliveira, R., Gonçalves, M., Ribeiro, P., Castro, E. V. & Amorim, B. Incommensurability-induced enhancement of superconductivity in one dimensional critical systems. Preprint at https://arxiv.org/abs/2303.17656 (2023).
Gonçalves, M., Pixley, J. H., Amorim, B., Castro, E. V. & Ribeiro, P. Short-range interactions are irrelevant at the quasiperiodicity-driven Luttinger liquid to Anderson glass transition. Phys. Rev. B 109, 014211 (2024).
Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).
Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).
Mishra, T., Carrasquilla, J. & Rigol, M. Phase diagram of the half-filled one-dimensional t-v-\({V}^{{\prime} }\) model. Phys. Rev. B 84, 115135 (2011).
Gu, S.-J. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371–4458 (2010).
Sun, G., Kolezhuk, A. K. & Vekua, T. Fidelity at Berezinskii-Kosterlitz-Thouless quantum phase transitions. Phys. Rev. B 91, 014418 (2015).
DeGottardi, W., Sen, D. & Vishveshwara, S. Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett. 110, 146404 (2013).
Chou, Y.-Z., Fu, Y., Wilson, J. H., König, E. J. & Pixley, J. H. Magic-angle semimetals with chiral symmetry. Phys. Rev. B 101(23), 235121 (2020).
Fishman, M., White, S. R. & Stoudenmire, E. M. Codebase release 0.3 for ITensor. SciPost Phys. Codebases https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3 (2022).
Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software library for tensor network calculations. SciPost Phys. Codebases https://doi.org/10.21468/SciPostPhysCodeb.4 (2022).
Gonçalves, M. et al. Data of figures in arXiv:2305.03800. Zenodo https://doi.org/10.5281/zenodo.8082294 (2023).
Acknowledgements
M.G. and P.R. acknowledge partial support from Fundação para a Ciência e Tecnologia (FCT-Portugal; Grant No. UID/CTM/04540/2019 and to the Research Unit UID/04540: CeFEMA financed by FCT-Portugal). B.A. and E.V.C. acknowledge partial support from FCT-Portugal (Grant No. UID/04650 - Centro de Física das Universidades do Minho e do Porto). M.G. acknowledges further support from FCT-Portugal (Grant No. SFRH/BD/145152/2019). B.A. acknowledges further support from FCT-Portugal (Grant No. CEECIND/02936/2017). We also acknowledge the Tianhe-2JK cluster at the Beijing Computational Science Research Center, the Bob∣Macc supercomputer (Computational Project CPCA/A1/470243/2021) and the OBLIVION supercomputer (Projects HPCUE/A1/468700/2021, 2022.15834.CPCA.A1 and 2022.15910.CPCA.A1). The OBLIVION supercomputer is at the High Performance Computing Center, University of Évora, and is funded by the ENGAGE SKA Research Infrastructure (Reference POCI-01-0145-FEDER-022217 - COMPETE 2020), the Foundation for Science and Technology, Portugal, the BigData@UE project (Reference ALT20-03-0246-FEDER-000033 - FEDER) and the Alentejo 2020 Regional Operational Program. Computer assistance was provided by the Computational Science Research Center, Bob∣Macc and OBLIVION support teams.
Author information
Authors and Affiliations
Contributions
M.G., F.R., B.A., E.V.C. and P.R. planned and defined the project, analysed and interpreted the results, and wrote the paper. M.G. performed the numerical calculations.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Sriram Ganeshan, Xiong-Jun Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–7 and Figs. 1–17.
Source data
Source Data Fig. 1
Contains all the source data for Fig. 1, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.
Source Data Fig. 2
Contains all the source data for Fig. 2, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.
Source Data Fig. 3
Contains all the source data for Fig. 3, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.
Source Data Fig. 4
Contains all the source data for Fig. 4, including the pdf file, text files containing the raw data and a ‘READ_ME.md’ file containing a detailed description of all the text files.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gonçalves, M., Amorim, B., Riche, F. et al. Incommensurability enabled quasi-fractal order in 1D narrow-band moiré systems. Nat. Phys. 20, 1933–1940 (2024). https://doi.org/10.1038/s41567-024-02662-2
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-024-02662-2
This article is cited by
-
Reentrant topological phases and spin density wave induced by 1D moiré potentials
Communications Physics (2025)
-
Quantum matter in multifractal patterns
Nature Physics (2024)